Request a call back

Join NOW to get access to exclusive study material for best results

Binomial Theorem

Binomial Theorem Synopsis

Synopsis


  1. Introduction to Binomial Expansion
    • A binomial expression is an algebraic expression having two terms. For example, (a + b), (a - b) etc.
    • The expansion of a binomial for any positive integral exponent ‘n’ is given by the binomial theorem. The binomial theorem says that
    (x + y)n = xn + nC1xn-1y + nC2xn-2y2 + ---- + nCrxn-ryr + ----- + nCn-1xyn-1 + nCnyn
    • In summation notation, begin mathsize 11px style left parenthesis straight x plus straight y right parenthesis to the power of straight n equals sum from straight k equals 0 to straight n of end style nCkxn-kyk

  2. Properties of Binomial Expansion
    • In the binomial expansion of (x + y)n the number of terms is (n + 1) i.e. one more than the exponent.
    • The exponent of ‘x’ goes on decreasing by unity and that of ‘y’ increases by unity. Exponent of ‘x’ is ‘n’ in the first term, (n - 1) in the second term, and so on ending with zero in the last term.
    • The sum of the indices of ‘x’ and ‘y’ is always equal to the index of the expression.
    • Replacing a by –a in the expansion of (x + y)n, we have
    (x – y)n = [x + (-y)]n
    (x – y) = nC0xn - nC1xn-1y + nC2xn-2y2 - nC3xn-3y3 + … + (-1)n nCnyn
    In summation notation begin mathsize 11px style left parenthesis straight x minus straight y right parenthesis to the power of straight n equals sum from straight k equals 0 to straight n of open parentheses negative 1 close parentheses to the power of straight k to the power of space straight n end exponent straight C subscript straight k straight x to the power of straight n minus straight k end exponent straight y to the power of straight k end style 
    • (x + y)n + (x - y)n = 2[nC0xny0nC2xn-2y2nC4xn-4y4 + ...]
    and
    (x + y)n - (x - y)n = 2[nC1xn-1y1 + nC3xn-3y3nC5xn-5y5 + ...]
    • If n is odd, then {(x + y)n + (x - y)n} and {(x + y)n - (x - y)n} both have the same number of terms equal to begin mathsize 11px style fraction numerator straight n plus 1 over denominator 2 end fraction end style
    • If n is even, then {(x + y)n + (x - y)n}  has begin mathsize 11px style open parentheses straight n over 2 plus 1 close parentheses end style terms and {(x + y)n - (x - y)n} has begin mathsize 11px style open parentheses straight n over 2 close parentheses end style terms.
  3. General and Middle Terms
    General Term
    i. General term in the expansion of (x + y)n is Tk+1 = nCkxn-kyk
    ii. General term in the expansion of (x - y)n is Tk+1 = nCk(-1)kxn-kyk
    Term from the end
    In the binomial expansion of (x + y)n, the kth term from the end is ((n + 1) - k + 1) = (n - k + 2)th term from the beginning.
    Middle Term(s)
    i. If n is even, there is only one middle term in the expansion of (x + y)n and it will be the begin mathsize 11px style open parentheses straight n over 2 plus 1 close parentheses to the power of th end style term.
    ii. If n is odd, there are two middle terms in the expansion of (x + y)n, i.e. the begin mathsize 11px style open parentheses fraction numerator straight n plus 1 over denominator 2 end fraction close parentheses to the power of th space and space open parentheses fraction numerator straight n plus 3 over denominator 2 end fraction close parentheses to the power of th end style term.
    iii. In the expansion of  begin mathsize 11px style open parentheses straight x plus 1 over straight x close parentheses to the power of 2 straight n end exponent end style, where x ≠ 0, the middle term is begin mathsize 11px style open parentheses fraction numerator 2 straight n plus 1 plus 1 over denominator 2 end fraction close parentheses to the power of th end style i.e., (n + 1)th term, as 2n is even.

  4. Binomial Coefficients
    • The coefficients, the number of combinations of n objects taken r at a time, occurring in the binomial expansion, are known as binomial coefficients.
    • The coefficients nCr of terms equidistant from the beginning and end are equal. These coefficients are known as binomial coefficients.
    i.e. nCrnCn-r begin mathsize 11px style for all end style r = 0, 1, 2, ..., n
    • Coefficient of (k + 1)th term in the binomial expansion of (1 + x)n is nCk.
    • Coefficient of Xk term in the binomial expansion of (1 + x)n is nCk.
    • Coefficient of Xterm in the binomial expansion of (1 - x)n is (-1)k nCk.
    • Coefficient of (k + 1)th term in the binomial expansion of (1 - x)n is (-1)k nCk.

  5. Binomial theorem for negative or fractional index
    • Let n be a negative integer or a fraction (+ve or –ve) and x be a real number such that | x | < 1, then
    begin mathsize 11px style open parentheses 1 plus straight x close parentheses to the power of straight n equals 1 plus nx plus fraction numerator straight n open parentheses straight n minus 1 close parentheses over denominator 2 factorial end fraction straight x squared plus fraction numerator straight n open parentheses straight n minus 1 close parentheses open parentheses straight n minus 2 close parentheses over denominator 3 factorial end fraction straight x cubed plus...
space space space space space space space space space space space space space space space space space space space space space plus fraction numerator straight n open parentheses straight n minus 1 close parentheses open parentheses straight n minus 2 close parentheses... open parentheses straight n minus straight r plus 1 close parentheses over denominator straight r factorial end fraction straight x to the power of straight r plus... end style
    • General Term
    General term in the expansion of (1 + x)n  when n is negative or fractional is given by
    begin mathsize 11px style straight T subscript straight r plus 1 end subscript equals fraction numerator straight n open parentheses straight n minus 1 close parentheses open parentheses straight n minus 2 close parentheses... open parentheses straight n minus straight r plus 1 close parentheses over denominator straight r factorial end fraction straight x to the power of straight r end style

  6. Some special expansions
    (1 - x)-1 = 1 + x + x2 + ... + xr + ...
    • (1 + x)-1 = 1 - x + x2 - ... + (-1)rxr + ...
Download complete content for FREE PDF
Get Latest Study Material for Academic year 24-25 Click here
×