The figure shows two parallelograms ABCD and ABEF. Prove that Area of ADF = area of
BCE.
Asked by Topperlearning User | 17th Aug, 2017, 01:59: PM
Expert Answer:
Parallelogram ABCD and parallelogram ABEF are on the same base AB and between the same parallels AB and FC.
ar (ABCD) = ar (ABEF)
Now ar
(ADF) =
ar (ABEF)
(Same base AB and between the same parallels AB and FE)
Similarly, ar
(BCE) =
ar (ABCD)
ar
(ADF) = ar
(BCE)








Answered by | 17th Aug, 2017, 03:59: PM
Related Videos
- how the two parallelograms are equal
- Area, base and corresponding altitude are x2, x-3 and x+4 respectively. Find the area of parallelogram.
- prove that parallelograms on the same base and with same area lie between the same parallels
- Area of trapezium
- Please ans.
- Please solve this question
- ABCD and BCFE are parallelograms. If area of triangle EBC = 480 sq. cm. Calculate (i) area of parallelogram ABCD
(ii) area of parallelogram BCFE.
- ABCD is a parallelogram of area 900 sq. cm. AP is drawn perpendicular to BC and AQ is perpendicular to DC. If AP = 24 cm and AQ = 18.75 cm. Calculate (i) AB (ii) BC (iii) area of
ABC.
- The diagonals of a parallelogram ABCD intersect at point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area that is ar (APQB) = ar (PQCD).
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change