Find the magnitude and direction of the resultant of the following forces impressed upon a particle, 3?2 kgf due NE, 6?2 kgf due SE, ?2 kgf due NW.
Asked by | 20th Jun, 2013, 02:44: PM
Expert Answer:
F1 = 3?2 kgf due NE
Writing it into x and y components
F1 = 3?2 kgf (cos45 i + sin45j)
F1 = 3i + 3j kgf
Similarly, F2 = 6?2 kgf due SE
F2 = 6?2 kgf (cos45 i - sin45j)
F2 = 6i - 6j kgf
F3 = ?2 kgf due NW
F3 = ?2 kgf (-cos45 i + sin45j)
F3 = -i + j kgf
hence, Fres = F1+F2+F3
Fres = 3i + 3j + 6i - 6j -i + j = 8i -2j
Hence, magnitude of Fres = sqrt(8^2 + 2^2) = sqrt(68)
direction = tan^-1 (-2/8) = tan^-1(-1/4)
F2 = 6i - 6j kgf
F3 = ?2 kgf (-cos45 i + sin45j)
F3 = -i + j kgf
hence, Fres = F1+F2+F3
Fres = 3i + 3j + 6i - 6j -i + j = 8i -2j
Hence, magnitude of Fres = sqrt(8^2 + 2^2) = sqrt(68)
direction = tan^-1 (-2/8) = tan^-1(-1/4)
Answered by | 23rd Jun, 2013, 06:15: AM
Related Videos
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change