Find the intervals in which the function f(x) =x3-6x2+9x+15 is increasing or decreasing

Asked by Gurpreet Kaur | 29th Jul, 2012, 11:29: AM

Expert Answer:

Answer : Given : f(x) = x3 - 6x2 +9x +15
To find : the interval in which f(x) is increasing or decreasing
 
 
Now 
 f(x) = x3 - 6x2 +9x +15
 f `(x) = 3x2 - 12x + 9 = 3 (x2 - 4x + 3 ) 
 
for f(x) to increase
f `(x) > 0 
=>  3 (x2 - 4x + 3 ) > 0
=> x2 - 4x + 3  > 0
=> (x - 3) ( x - 1) > 0
 
 
              +                                                    _                                        + 
<----------------------|----------------------|-------------------->
 - infinity              1                        3                     + infinity
 
=>   In the interval -infinity < x < 1  and (union)    3 < x < +infinity f(x) is increasing
 
and    in the interval  1 < x < 3  , f(x) is decreasing Answer 

Answered by  | 30th Jul, 2012, 02:05: AM

Queries asked on Sunday & after 7pm from Monday to Saturday will be answered after 12pm the next working day.