eg.  v = 2x ; assume t = 0 ; x = 2 m ; find a(t)?

 

Asked by kapilkulhari | 23rd May, 2019, 06:56: PM

Expert Answer:

v equals 2 x
fraction numerator d x over denominator d t end fraction equals 2 x
integral fraction numerator d x over denominator x end fraction equals integral 2 d t
ln x equals 2 t plus C
a t space t equals 0 semicolon space x equals 2 m
ln 2 equals C
T h e r e f o r e
ln x equals 2 t plus ln 2
x equals 2 e to the power of 2 t end exponent
A s space w e space k n o w
v equals fraction numerator d x over denominator d t end fraction
v equals fraction numerator d open parentheses 2 e to the power of 2 t end exponent close parentheses over denominator d t end fraction
v equals 2 fraction numerator d open parentheses e to the power of 2 t end exponent close parentheses over denominator d t end fraction
v equals 2 open parentheses 2 e to the power of 2 t end exponent close parentheses
V equals 4 e to the power of 2 t end exponent
A c c e l e r a t i o n comma a equals fraction numerator d v over denominator d t end fraction equals 4 open parentheses fraction numerator d e to the power of 2 t end exponent over denominator d t end fraction close parentheses
a left parenthesis t right parenthesis equals 8 e to the power of 2 t end exponent

Answered by Utkarsh Lokhande | 24th May, 2019, 11:33: AM