Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Asked by pulakananda | 30th Aug, 2010, 12:00: AM

Expert Answer:

Let the square have side = a.So the equilateral triangle an the side ' a' will have area:A= a234Now the diagonal of the square has length = a2So the equilateral triangle on the diagonal will have area :B = a2234=2a234=2A.Hence A= 12B">

Answered by  | 30th Aug, 2010, 09:47: AM

Queries asked on Sunday & after 7pm from Monday to Saturday will be answered after 12pm the next working day.