# CBSE Class 11-science Answered

**if α, ß, Γ be the roots of the equation x^3+px^2+qx+r=0 then find the value of (α+ß-3Γ)(ß+Γ-3α)(α+Γ-3ß)**

If α , β and γ are roots of equation , then

( x- α ) ( x - β ) ( x - γ ) = 0

x^{3} - ( α + β + γ ) x^{2} + ( α β + β γ + γ α) x - ( α β γ ) = 0 ................(1)

given equation is

x^{3} + p x^{2} + q x + r = 0 ...........................(2)

By comparing eqn.(1) , (2) and (3) , we get

( α + β + γ ) = - p ..............................(3)

( α β + β γ + γ α) = q .......................(4)

( α β γ ) = - r .................................(5)

Let δ = ( α + β - 3 γ ) ( β + γ - 3 α ) ( γ + α - 3β )

Using eqn.(3) , above equation is written as

δ = - ( p + 4 γ ) ( p + 4 α ) ( p + 4β )

δ = -[ p^{3} + 4 ( α + β + γ ) p^{2} + 16 ( α β + β γ + γ α) p + 64 ( α β γ ) ]

By using eqn.(3) , (4) and (5) , we re write above expression as

δ = - [ p^{3 }- 4p^{3} + 16 pq - 64 r ] = 3 p^{3} - 16 p q + 64 r

---------------------------------------------------------------------------