Chapter 5 : Factorisation - Frank Solutions for Class 9 Maths ICSE

Mathematics in ICSE Class 9 is one of the most challenging and trickiest subjects of all. It includes complex topics such as logarithms, expansions, indices and Pythagoras Theorem which are difficult to understand for an average student. TopperLearning provides study materials for ICSE Class 9 Mathematics to make the subject easy and help students to clear all their concepts. Our study materials comprise numerous video lessons, question banks, revision notes and sample papers which help achieve success in the examination.

Read  more
Page / Exercise

Chapter 5 - Factorisation Excercise Ex. 5.1

Question 1

Factorise the following by taking out the common factors:

4x2y3 - 6x3y2 - 12xy2

Solution 1

Question 2

Factorise the following by taking out the common factors:

5a(x2 - y2) + 35b(x2 - y2)

Solution 2

Question 3

Factorise the following by taking out the common factors:

2x5y + 8x3y2 - 12x2y3

Solution 3

Question 4

Factorise the following by taking out the common factors:

12a3 + 15a2b - 21ab2

Solution 4

Question 5

Factorise the following by taking out the common factors:

24m4n6 + 56m6n4 - 72m2n2

Solution 5

Question 6

Factorise the following by taking out the common factors:

(a - b)2 -2(a - b)

Solution 6

Question 7

Factorise the following by taking out the common factors:

2a(p2 + q2) + 4b(p2 + q2)

Solution 7

Question 8

Factorise the following by taking out the common factors:

81(p + q)2 -9p - 9q

Solution 8

Question 9

Factorise the following by taking out the common factors:

(mx + ny)2 + (nx - my)2

Solution 9

Question 10

Factorise the following by taking out the common factors:

36(x + y)3 - 54(x + y)2

Solution 10

Question 11

Factorise the following by taking out the common factors:

p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)

Solution 11

Question 12

Factorise the following by grouping the terms:

15xy - 9x - 25y + 15

Solution 12

15xy - 9x - 25y + 15

= (15xy - 9x) - (25y + 15)

= 3x(5y - 3) - 5(5y - 3)

= (5y - 3)(3x - 5)

Question 13

Factorise the following by grouping the terms:

15x2 + 7y - 3x - 35xy

Solution 13

15x2 + 7y - 3x - 35xy

= 15x2 - 3x - 35xy + 7y

= (15x2 - 3x) - (35xy - 7y)

= 3x(5x - 1) - 7y(5x - 1)

= (5x - 1)(3x - 7y)

Question 14

Factorise the following by grouping the terms:

9 + 3xy + x2y + 3x

Solution 14

9 + 3xy + x2y + 3x

= 9 + 3xy + 3x + x2y

= (9 + 3xy) + (3x + x2y)

= 3(3 + xy) + y(3 + xy)

= (3 + xy)(3 + x)

Question 15

Factorise the following by grouping the terms:

8(2a + b)2 - 8a -4b

Solution 15

8(2a + b)2 - 8a - 4b

= 8(2a + b)2 - (8a + 4b)

= 8(2a + b)2 - 4(2a + b)

= 4(2a + b)[2(2a + b) - 1]

= 4(2a + b)[4a + 2b - 1]

Question 16

Factorise the following by grouping the terms:

x(x - 4)- x + 4

Solution 16

x(x - 4) - x + 4

= x(x - 4) - 1(x - 4)

= (x - 4)(x - 1)

Question 17

Factorise the following by grouping the terms:

2m3 - 5n2 - 5m2n + 2mn

Solution 17

2m3 - 5n2 - 5m2n + 2mn

= 2m3 + 2mn - 5m2n - 5n2

= (2m3 + 2mn) - (5m2n + 5n2)

= 2m(m2 + n) - 5n(m2 + n)

= (m2 + n)(2m - 5n)

Question 18

Factorise the following by grouping the terms:

4abx2 + 49aby2 + 14xy(a2 + b2)

Solution 18

4abx2 + 49aby2 + 14xy(a2 + b2)

= 4abx2 + 49aby2 + 14a2xy + 14b2xy

= (4abx2 + 14a2xy) + (14b2xy + 49aby2)

= 2ax(2bx + 7ay) + 7by(2bx + 7ay)

= (2bx + 7ay)(2ax + 7by)

Question 19

Factorise the following by grouping the terms:

9x3 + 6x2y2 - 4y3 - 6xy

Solution 19

9x3 + 6x2y2 - 4y3 - 6xy

= 9x3 + 6x2y2 - 6xy - 4y3

= (9x3 + 6x2y2) - (6xy + 4y3)

= 3x2(3x + 2y2) - 2y(3x + 2y2)

= (3x + 2y2)(3x2 - 2y)

Question 20

Factorise the following by grouping the terms:

3ax2 - 5bx2 + 9az2 + 6ay2 - 10by2 - 15bz2

Solution 20

3ax2 - 5bx2 + 9az2 + 6ay2 - 10by2 - 15bz2

= 3ax2 + 6ay2 + 9az2 - 5bx2 - 10by2 - 15bz2

= (3ax2 + 6ay2 + 9az2) - (5bx2 + 10by2 + 15bz2)

= 3a(x2 + 2y2 + 3z2) - 5b(x2 + 2y2 + 3z2)

= (x2 + 2y2 + 3z2)(3a - 5b)

Question 21

Factorise the following by grouping the terms:

8x3 - 24x2y + 54xy2 -162y3

Solution 21

8x3 - 24x2y + 54xy2 - 162y3

= (8x3 - 24x2y) + (54xy2 - 162y3)

= 8x2(x - 3y) + 54y2(x - 3y)

= (x - 3y)(8x2 + 54y2)

Question 22

Factorise the following by grouping the terms:

2a + b + 3c - d + (2a + b)3 + (2a + b)2(3c - d)

Solution 22

2a + b + 3c - d + (2a + b)3 + (2a + b)2(3c - d)

= (2a + b + 3c - d) + [(2a + b)3 + (2a + b)2(3c - d)]

= 1(2a + b + 3c - d) + (2a + b)2(2a + b + 3c - d)

= (2a + b + 3c - d)[1 + (2a + b)2]

Question 23

Factorise the following by grouping the terms:

xy(a2 + 1) + a(x2 + y2)

Solution 23

xy(a2 + 1) + a(x2 + y2)

= a2xy + xy + ax2 + ay2

= (a2xy + ax2) + (ay2 + xy)

= ax(ay + x) + y(ay + x)

= (ay + x)(ax + y)

Question 24

Factorise the following by grouping the terms:

p2x2 + (px2 + 1)x + p

Solution 24

p2x2 + (px2 + 1)x + p

= p2x2 + px3 + x + p

= (p2x2 + px3) + (p + x)

= px2(p + x) + 1(p + x)

= (p + x)(px2 + 1)

Question 25

Factorise the following by grouping the terms:

x2 - (p + q)x + pq

Solution 25

x2 - (p + q)x + pq

= x2 - px - qx + pq

= (x2 - px) - (qx + pq)

= x(x - p) - q(x - p)

= (x - p)(x - q)

Question 26

Factorise the following by grouping the terms:

Solution 26

Question 27

Factorise the following by grouping the terms:

x + y + m(x + y)

Solution 27

x + y + m(x + y)

= (x + y) + m(x + y)

= (x + y)(1 + m)

Question 28

Factorise the following by grouping the terms:

  

Solution 28

Question 29

Factorise the following by grouping the terms:

2p(a2 - 2b2) -14p + (a2 - 2b2)2 - 7(a2 - 2b2)

Solution 29

2p(a2 - 2b2) - 14p + (a2 - 2b2)2 - 7(a2 - 2b2)

= 2p(a2 - 2b2) + (a2 - 2b2)2 - 14p - 7(a2 - 2b2)

= [2p(a2 - 2b2) + (a2 - 2b2)2] - [14p + 7(a2 - 2b2)]

= (a2 - 2b2)(2p + a2 - 2b2) - 7(2p + a2 - 2b2)

= (2p + a2 - 2b2)(a2 - 2b2 - 7)

Chapter 5 - Factorisation Excercise Ex. 5.2

Question 1

Factorise the following by splitting the middle term:

x2 + 6x + 8

Solution 1

x2 + 6x + 8

= x2 + 4x + 2x + 8

= x(x + 4) + 2(x + 4)

= (x + 4)(x + 2)

Question 2

Factorise the following by splitting the middle term:

x2 - 11x + 24

Solution 2

x2 - 11x + 24

= x2 - 8x - 3x + 24

= x(x - 8) - 3(x - 8)

= (x - 8)(x - 3)

Question 3

Factorise the following by splitting the middle term:

x2 + 5x - 6

Solution 3

x2 + 5x - 6

= x2 + 6x - x - 6

= x(x + 6) - 1(x + 6)

= (x + 6)(x - 1)

Question 4

Factorise the following by splitting the middle term:

p2- 12p - 64

Solution 4

p2 - 12p - 64

= p2 - 16p + 4p - 64

= p(p - 16) + 4(p - 16)

= (p - 16)(p + 4)

Question 5

Factorise the following by splitting the middle term:

y2 - 2y - 24

Solution 5

y2 - 2y - 24

= y2 - 6y + 4y - 24

= y(y - 6) + 4(y - 6)

=(y - 6)(y + 4)

Question 6

Factorise the following by splitting the middle term:

3x2 + 19x - 14

Solution 6

3x2 + 19x - 14

= 3x2 + 21x - 2x - 14

= 3x(x + 7) - 2(x + 7)

= (x + 7)(3x - 2)

Question 7

Factorise the following by splitting the middle term:

15a2 - 14a - 16

Solution 7

15a2 - 14a - 16

= 15a2 - 24a + 10a - 16

= 3a(5a - 8) + 2(5a - 8)

= (5a - 8)(3a + 2)

Question 8

Factorise the following by splitting the middle term:

12 + x - 6x2

Solution 8

12 + x - 6x2

= 12 + 9x - 8x - 6x2

= 3(4 + 3x) - 2x(4 + 3x)

= (4 + 3x)(3 - 2x)

Question 9

Factorise the following by splitting the middle term:

7x2 + 40x - 12

Solution 9

7x2 + 40x - 12

= 7x2 + 42x - 2x - 12

= 7x(x + 6) - 2(x + 6)

= (x + 6)(7x - 2)

Question 10

Factorise the following:

5x2 - 17xy + 6y2

Solution 10

5x2 - 17xy + 6y2

= 5x2 - 15xy - 2xy + 6y2

= 5x(x - 3y) - 2y(x - 3y)

= (x - 3y)(5x - 2y)

Question 11

Factorise the following:

9x2 - 22xy + 8y2

Solution 11

9x2 - 22xy + 8y2

= 9x2 - 18xy - 4xy + 8y2

= 9x(x - 2y) - 4y(x - 2y)

= (x - 2y)(9x - 4y)

Question 12

Factorise the following:

2x3 + 5x2y - 12xy2

Solution 12

2x3 + 5x2y - 12xy2

= 2x3 + 8x2y - 3x2y - 12xy2

= 2x2(x + 4y) - 3xy(x + 4y)

= (x + 4y)(2x2 - 3xy)

= (x + 4y)x(2x - 3y)

= x(x + 4y)(2x - 3y)

Question 13

Factorise the following:

x2y2 + 15xy - 16

Solution 13

x2y2 + 15xy - 16

= x2y2 + 16xy - xy - 16

= xy(xy + 16) - 1(xy + 16)

= (xy + 16)(xy - 1)

Question 14

Factorise the following:

(2p + q)2 - 10p - 5q - 6

Solution 14

(2p + q)2 - 10p - 5q - 6

= (2p + q)2 - (10p - 5q) - 6

= (2p + q)2 - 5(2p + q) - 6

= (2p + q)2 - 6(2p + q) + (2p + q) - 6

= (2p + q)(2p + q - 6) + 1(2p + q - 6)

= (2p + q - 6)(2p + q + 1) 

Question 15

Factorise the following:

y2 + 3y + 2 + by + 2b

Solution 15

y2 + 3y + 2 + by + 2b

= y2 + y + 2y + 2 + by + 2b

= y2 + y + by + 2y + 2 + 2b

= y(y + 1 + b) + 2(y + 1 + b)

= (y + 1 + b)(y + 2)

Question 16

Factorise the following:

x3y3 - 8x2y2 + 15xy

Solution 16

x3y3 - 8x2y2 + 15xy

= x3y3 - 3x2y2 - 5x2y2 + 15xy

= x2y2(xy - 3) - 5xy(xy - 3)

= (xy - 3)(x2y2 - 5xy)

= (xy - 3)xy(xy - 5)

= xy(xy - 3)(xy - 5)

Question 17

Factorise the following:

Solution 17

Question 18

Factorise the following:

Solution 18

Question 19

Factorise the following:

5(3x + y)2 + 6(3x + y) - 8

Solution 19

5(3x + y)2 + 6(3x + y) - 8

= 5(3x + y)2 + 10(3x + y) - 4(3x + y) - 8

= 5(3x + y)(3x + y + 2) - 4(3x + y + 2)

= (3x + y + 2)[5(3x + y) - 4]

 

Question 20

Factorise the following:

5 - 4(a - b) - 12(a - b)2

Solution 20

5 - 4(a - b) - 12(a - b)2

= 5 - 10(a - b) + 6(a - b) - 12(a - b)2

= 5[1 - 2(a - b)] + 6(a - b)[1 - 2(a - b)]

= [5 + 6(a - b)][1 - 2(a - b)]

= (5 + 6a - 6b)(1 - 2a + 2b)

Question 21

Factorise the following:

(3a - 2b)2 +3(3a - 2b) - 10

Solution 21

(3a - 2b)2 + 3(3a - 2b) - 10

= (3a - 2b)2 + 5(3a - 2b) - 2(3a - 2b) - 10

= (3a - 2b)(3a - 2b + 5) - 2(3a - 2b +5)

= (3a - 2b + 5)((3a - 2b - 2)

Question 22

Factorise the following:

(a2 - 2a)2 - 23(a2 - 2a) + 120

Solution 22

(a2 - 2a)2 - 23(a2 - 2a) + 120

= (a2 - 2a)2 - 15(a2 - 2a) - 8(a2 - 2a) + 120

= (a2 - 2a)(a2 - 2a - 15) - 8(a2 - 2a - 15)

= (a2 - 2a - 15)(a2 - 2a - 8)

= (a2 - 5a + 3a - 15)(a2 - 4a + 2a - 8)

= [a(a - 5) + 3(a - 5)][a(a - 4) + 2(a - 4)]

= [(a - 5)(a + 3)][(a - 4)(a + 2)]

= (a - 5)(a + 3)(a - 4)(a + 2)

= (a + 2)(a + 3)(a - 4)(a - 5)

Question 23

Factorise the following:

(x + 4)2 - 5xy - 20y - 6y2

Solution 23

(x + 4)2 - 5xy - 20y - 6y2

= (x + 4)2 - 5y(x + 4) - 6y2

= (x + 4)2 - 6y(x + 4) + y(x + 4) - 6y2

= (x + 4)(x + 4 - 6y) + y(x + 4 - 6y)

= (x + 4 - 6y)(x + 4 + y)

= (x - 6y + 4)(x + y + 4)

Question 24

Factorise the following:

7(x - 2)2 - 13(x - 2) - 2

Solution 24

7(x - 2)2 - 13(x - 2) - 2

= 7(x - 2)2 - 14(x - 2) + (x - 2) - 2

= 7(x - 2)(x - 2 - 2) + 1(x - 2 - 2)

= 7(x - 2)(x - 4) + 1(x - 4)

= (x - 4)[7(x - 2) + 1]

= (x - 4)(7x - 14 + 1)

= (x - 4)(7x - 13)

Question 25

Factorise the following:

12 - (y + y2)(8 - y - y2)

Solution 25

12 - (y + y2)(8 - y - y2)

= 12 - a(8 - a) [Taking y + y2 = a]

= 12 - 8a + a2

= 12 - 6a - 2a + a2

= 6(2 - a) - a(2 - a)

= (2 - a)(6 - a)

= [2 - (y + y2)][6 - (y + y2)]

= (2 - y - y2)(6 - y - y2)

= (2 - 2y + y - y2)(6 - 3y + 2y - y2)

= [2(1 - y) + y(1 - y)][3(2 - y) + y(2 - y)]

= [(1 - y)(2 + y)][(2 - y)(3 + y)]

= (1 - y)(2 + y)(2 - y)(3 + y)

= (y - 1)(y + 2)(y - 2)(y + 3)

Question 26

Factorise the following:

(p2 + p)2 - 8(p2 + p) + 12

Solution 26

(p2 + p)2 - 8(p2 + p) + 12

= (p2 + p)2 - 6(p2 + p) - 2(p2 + p) + 12

= (p2 + p)(p2 + p - 6) - 2(p2 + p - 6)

= (p2 + p - 6)(p2 + p - 2)

= (p2 + 3p - 2p - 6)(p2 + 2p - p - 2)

= [p(p + 3) - 2(p + 3)][p(p + 2) - 1(p + 2)]

= [(p + 3)(p - 2)][(p + 2)(p - 1)]

= (p + 3)(p - 2)(p + 2)(p - 1)

Question 27

Factorise the following:

(y2 - 3y)(y2 - 3y + 7) + 10

Solution 27

(y2 - 3y)(y2 - 3y + 7) + 10

 = a(a + 7) + 10 [taking (y2 - 3y) = a]

= a2 + 7a + 10

= a2 + 5a + 2a + 10

= a(a + 5) + 2(a + 5)

= (a + 5)(a + 2)

= (y2 - 3y + 5)(y2 - 3y + 2)

= (y2 - 3y + 5)(y2 - 2y - y + 2)

= (y2 - 3y + 5)[y(y - 2) - 1(y - 2)]

= (y2 - 3y + 5)[(y - 2)(y - 1)]

= (y - 1)(y - 2)(y2 - 3y + 5)

Question 28

Factorise the following:

(t2 - t)(4t2 - 4t - 5) - 6

Solution 28

(t2 - t)(4t2 - 4t - 5) - 6

= (t2 - t)[4(t2 - t) - 5] - 6

= a[4a - 5] - 6 [Taking (t2 - t) = a]

= 4a2 - 5a - 6

= 4a2 - 8a + 3a - 6

= 4a(a - 2) + 3(a - 2)

= (a - 2)(4a + 3)

= (t2 - t - 2)[4(t2 - t) + 3]

= (t2 - 2t + t - 2)(4t2 - 4t + 3)

= [t(t - 2) + 1(t - 2)](4t2 - 4t + 3)

= [(t - 2)(t + 1)](4t2 - 4t + 3)

= (t + 1)(t - 2)(4t2 - 4t + 3)

Question 29

Factorise the following:

12(2x - 3y)2 - 2x + 3y - 1

Solution 29

12(2x - 3y)2 - 1(2x - 3y) - 1

= 12a2 - a - 1 [Taking (2x - 3y) = a]

= 12a2 - 4a + 3a - 1

= 4a(3a - 1) + 1(3a - 1)

= (3a - 1)(4a + 1)

= [3(2x - 3y) - 1][4(2x - 3y) + 1]

= (6x - 9y - 1)(8x - 12y + 1)

Question 30

Factorise the following:

6 - 5x + 5y + (x - y)2

Solution 30

6 - 5x + 5y + (x - y)2

= 6 - 5(x - y) + (x - y)2

= 6 - 3(x - y) - 2(x - y) + (x - y)2

= 3[2 - (x - y)] - (x - y)[2 - (x - y)]

= 3(2 - x + y) - (x - y)(2 - x + y)

= (2 - x + y)(3 - x + y)

Question 31

Factorise the following:

Solution 31

Question 32

Factorise the following:

p4 + 23p2q2 + 90q4

Solution 32

P4 + 23p2q2 + 90q4

= p4 + 18p2q2 + 5p2q2 + 90q4

= p2(p2 + 18q2) + 5q2(p2 + 18q2)

= (p2 + 18q2)(p2 + 5q2)

Question 33

Factorise the following:

2a3 + 5a2b - 12ab2

Solution 33

2a3 + 5a2b - 12ab2

= 2a3 + 8a2b - 3a2b - 12ab2

= 2a2(a + 4b) - 3ab(a + 4b)

= (a + 4b)(2a2 - 3ab)

= (a + 4b)a(2a - 3b)

= a(a + 4b)(2a - 3b)

Chapter 5 - Factorisation Excercise Ex. 5.3

Question 1

Factorise the following by the difference of two squares:

x2 - 16

Solution 1

x2 - 16

= x2 - 42

= (x - 4)(x + 4)

Question 2

Factorise the following by the difference of two squares:

64x2 - 121y2

Solution 2

64x2 - 121y2

= (8x)2 - (11y)2

= (8x - 11y)(8x + 11y)

Question 3

Factorise the following by the difference of two squares:

441 - 81y2

Solution 3

441 - 81y2

= (21)2 - (9y)2

= (21 - 9y)(21 + 9y)

= 3(7 - 3y)3(7 + 3y)

= 9(7 - 3y)(7 + 3y)

Question 4

Factorise the following by the difference of two squares:

x6 - 196

Solution 4

x6 - 196

= (x3)2 - (14)2

= (x3 - 14)(x3 + 14)

Question 5

Factorise the following by the difference of two squares:

625 - b2

Solution 5

625 - b2

= (25)2 - (b)2

= (25 - b)(25 + b)

Question 6

Factorise the following by the difference of two squares:

Solution 6

Question 7

Factorise the following by the difference of two squares:

8xy2 - 18x3

Solution 7

8xy2 - 18x3

= 2x(4y2 - 9x2)

= 2x[(2y)2 - (3x)2]

= 2x[(2y - 3x)(2y + 3x)]

= 2x(2y - 3x)(2y + 3x)

Question 8

Factorise the following by the difference of two squares:

16a4 - 81b4

Solution 8

16a4 - 81b4

= (4a2)2 - (9b2)2

= (4a2 - 9b2)(4a2 + 9b2)

= [(2a)2 - (3b)2](4a2 + 9b2)

= [(2a - 3b)(2a + 3b)](4a2 + 9b2)

= (2a - 3b)(2a + 3b)(4a2 + 9b2)

Question 9

Factorise the following by the difference of two squares:

a(a - 1) - b(b - 1)

Solution 9

a(a - 1) - b(b - 1)

= a2 - a - b2 + b

= a2 - b2 - a + b

= (a2 - b2) - (a - b)

= (a - b)(a + b) - (a - b)

= (a - b)(a + b - 1)

Question 10

Factorise the following by the difference of two squares:

(x + y)2 -1

Solution 10

(x + y)2 - 1

= (x + y)2 - (1)2

= (x + y + 1)(x + y - 1)

Question 11

Factorise the following by the difference of two squares:

x2 + y2 - z2 - 2xy

Solution 11

x2 + y2 - z2 - 2xy

= x2 + y2 - 2xy - z2

= (x2 + y2 - 2xy) - z2

= (x - y)2 - (z)2

= (x - y - z)(x - y + z)

Question 12

Factorise the following by the difference of two squares:

(x - 2y)2 -z2

Solution 12

(x - 2y)2 - z2

= (x - 2y)2 - (z)2

= (x - 2y - z)(x - 2y + z)

Question 13

Factorise the following:

9(a - b)2 - (a + b)2

Solution 13

9(a - b)2 - (a + b)2

= [3(a - b)]2 - (a + b)2

= [3(a - b) - (a + b)][3(a - b) + (a + b)]

= (3a - 3b - a - b)(3a - 3b + a + b)

= (2a - 4b)(4a - 2b)

= 2(a - 2b)2(2a - b)

= 4(a - 2b)(2a - b)

Question 14

Factorise the following:

25(x - y)2 - 49(c - d)2

Solution 14

25(x - y)2 - 49(c - d)2

= [5(x - y)]2 - [7(c - d)]2

= [5(x - y) - 7(c - d)][5(x - y) + 7(c - d)]

= (5x - 5y - 7c + 7d)(5x - 5y + 7c - 7d)

Question 15

Factorise the following:

(2a - b)2 -9(3c - d)2

Solution 15

(2a - b)2 - 9(3c - d)2

= (2a - b)2 - [3(3c - d)]2

= [(2a - b) - 3(3c - d)][(2a - b) + 3(3c - d)]

= (2a - b - 9c + 3d)(2a - b + 9c - 3d)

Question 16

Factorise the following:

b2 - 2bc + c2 - a2

Solution 16

b2 - 2bc + c2 - a2

= (b2 - 2bc + c2) - a2

= (b - c)2 - (a)2

= (b - c - a)(b - c + a)

Question 17

Factorise the following:

Solution 17

Question 18

Factorise the following:

(x2 + y2 - z2)2 - 4x2y2

Solution 18

(x2 + y2 - z2)2 - 4x2y2

= (x2 + y2 - z2)2 - (2xy)2

= (x2 + y2 - z2 - 2xy)(x2 + y2 - z2 + 2xy)

= [(x2 + y2 - 2xy) - z2][(x2 + y2 + 2xy) - z2]

= [(x - y)2 - z2][(x + y)2 - z2]

= [(x - y - z)(x - y + z)][(x + y - z)(x + y + z)]

= (x - y - z)(x - y + z)(x + y - z)(x + y + z)

Question 19

Factorise the following:

a2 + b2 - c2 - d2 + 2ab - 2cd

Solution 19

a2 + b2 - c2 - d2 + 2ab - 2cd

= (a2 + b2 + 2ab) - (c2 + d2 + 2cd)

= (a + b)2 - (c + d)2

= (a + b + c + d)(a + b - c - d)

Question 20

Factorise the following:

4xy - x2 - 4y2 + z2

Solution 20

4xy - x2 - 4y2 + z2

= z2 - x2 - 4y2 + 4xy

= z2 - (x2 + 4y2 - 4xy)

= z2 - (x - 2y)2

= [z - (x - 2y)][z + (x - 2y)]

= (z - x + 2y)(z + x - 2y)

Question 21

Factorise the following:

4x2 - 12ax - y2 - z2 - 2yz + 9a2

Solution 21

4x2 - 12ax - y2 - z2 - 2yz + 9a2

= (4x2 - 12ax + 9a2) - (y2 + z2 + 2yz)

= (2x - 3a)2 - (y + z)2

= [(2x - 3a) + (y + z)][(2x - 3a) - (y + z)]

= (2x - 3a + y + z)(2x - 3a - y - z)

Question 22

Factorise the following:

(x + y)3 - x - y

Solution 22

(x + y)3 - x - y

= (x + y)(x + y)2 - (x + y)

= (x + y)[(x + y)2 - 1]

= (x + y)[(x + y + 1)(x + y - 1)]

= (x + y)(x + y + 1)(x + y - 1)

Question 23

Factorise the following:

y4 + y2 + 1

Solution 23

y4 + y2 + 1

= y4 + 2y2 + 1 - y2

= (y2 + 1)2 - y2

= (y2 + 1 + y)(y2 + 1 - y)

Question 24

Factorise the following:

(a2 - b2)(c2 - d2) - 4abcd

Solution 24

(a2 - b2)(c2 - d2) - 4abcd

= a2c2 - a2d2 - b2c2 + b2d2 - 4abcd

= a2c2 + b2d2 - 2abcd - a2d2 - b2c2 - 2abcd

= (a2c2 + b2d2 - 2abcd) - (a2d2 + b2c2 + 2abcd)

= (ac - bd)2 - (ad + bc)2

= [(ac - bd) + (ad + bc)][(ac - bd) - (ad + bc)]

= (ac - bd + ad + bc)(ac - bd - ad - bc)

Question 25

Express each of the following as the difference of two squares:

(x2 - 2x + 3)(x2 + 2x + 3)

Solution 25

Question 26

Express each of the following as the difference of two squares:

(x2 - 2x + 3) (x2 - 2x - 3)

Solution 26

Question 27

Express each of the following as the difference of two squares:

(x2 + 2x - 3) (x2 - 2x + 3)

Solution 27

Question 28

Factorise:

  

Solution 28

Question 29

Factorise:

Solution 29

Question 30

Factorise:

x4 + y4 - 6x2y2

Solution 30

Question 31

Factorise:

4x4 + 25y4 + 19x2y2

Solution 31

Question 32

Factorise:

Solution 32

Question 33

Factorise:

5x2 - y2 - 4xy + 3x - 3y

Solution 33

Key Features of Study Materials for ICSE Class 9 Maths:

  • Include video lessons, question bank and solved sample papers
  • Designed according to the latest ICSE syllabus
  • Developed by subject experts
  • Content revised from time to time
  • Helpful when doing quick revision
  • Guidance when doing homework
  • Understand concepts easily
  • Significantly improve your Mathematics score