CBSE Class 8 - Patterns in Square Numbers Videos
Patterns in square numbers
Patterns to find the square of some
standrad numbers, Pythagorean triplets
- Sattvaj here Is it compulsory that the difference between the 2 bigger no.s in Pythagorean triplets is 2? 18,80 and 82, there is a difference of 2 between 80 and 82 so is it there in all no.s or there can be a smaller/bigger difference?
- 1967 perfect square
- What will be the ones digits of the square of the number 1145
- Find the square of the number 82 using the property (a + b)^{2} = a^{2 }+ b^{2} + 2ab.
- Find the square of the number (-25), using the identity (a + b)^{2} = a^{2 }+ b^{2} + 2ab.
- Using the given pattern, find the missing numbers. 1^{2} + 2^{2} + 2^{2} = 3^{2} 2^{2} + 3^{2} + 6^{2} = 7^{2} 3^{2} + 4^{2} + __ = 13^{2} 4^{2} + 5^{2} + 20^{2} = __^{2} 5^{2} + 6^{2 }+ __ = 31^{2} 6^{2} + __ + 42^{2} = 43^{2}
- Observe the following pattern and find the missing numbers. 11^{2} = 121 101^{2} = _ _ _ _ _ 10101^{2} = 102030201 1010101^{2} = 1_ _ _ _ _4_ _ _ _ _1 101010101^{2} = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
- Observe the following pattern and write the missing numbers. 1^{2} = 1 11^{2} = 121 111^{2} = 12321 1111^{2} = ________ 11111^{2} = _________
- Observe the following pattern: 11 × 13 = (12 - 1) × (12 + 1) = 12^{2} - 1 13 × 15 = (14 - 1) × (14 + 1) = 14^{2} - 1 15 × 17 = (16 - 1) × (16 + 1) = 16^{2} - 1 Using this pattern, find (i) 19 × 21 (ii) 29 × 31
- Observe the following pattern and find the missing numbers. 7^{2} = 49 67^{2} = 4489 667^{2} = 444889 6667^{2} = 44448889 66667^{2} = ___________ 666667^{2} = ____________