Class 10 SELINA Solutions Maths Chapter 2 - Banking (Recurring Deposit Accounts)
Banking (Recurring Deposit Accounts) Exercise Ex. 2(A)
Solution 1
Installment per month(P) = Rs. 600
Number of months(n) = 20
Rate of interest (r) = 10% p.a.
The amount that Manish will get at the time of maturity
=Rs (600 x 20)+ Rs 1,050
=Rs 12,000+ Rs 1,050
= Rs 13,050 Ans.
Solution 2
Installment per month(P) = Rs 640
Number of months(n) = 4.5 × 12 = 54
Rate of interest(r)= 12% p.a.
The amount that Manish will get at the time of maturity
=Rs (640 x 54)+ Rs 9,504
=Rs 34,560+ Rs 9,504
= Rs 44,064
Solution 3
For A
Installment per month(P) = Rs 1,200
Number of months(n) = 3 × 12 = 36
Rate of interest(r)= 10% p.a.
The amount that A will get at the time of maturity
=Rs (1,200 x 36)+ Rs 6,660
=Rs 43,200+ Rs 6,660
= Rs 49,860
For B
Installment per month(P) = Rs 1,500
Number of months(n) = 2.5 × 12 = 30
Rate of interest(r)= 10% p.a.
The amount that B will get at the time of maturity
=Rs(1,500 x 30)+ Rs 5,812.50
=Rs 45,000+ Rs 5,812.50
= Rs 50,812.50
Difference between both amounts= Rs 50,812.50 - Rs 49,860
= Rs 952.50
Then B will get more money than A by Rs 952.50 Ans.
Solution 4
Let Installment per month(P) = Rs y
Number of months(n) = 12
Rate of interest(r)= 11%p.a.
Maturity value= Rs (y x 12) + Rs 0.715 y = Rs 12.715 y
Given maturity value= Rs 12,715
Then Rs 12.715 y = Rs 12,715
Ans.
Solution 5
Let Installment per month(P) = Rs y
Number of months(n) = 3.5 × 12 = 42
Rate of interest(r) = 12% p.a.
Maturity value= Rs(y x 42) + Rs 9.03y = Rs 51.03y
Given maturity value = Rs 10,206
Then Rs 51.03y = Rs 10206
Ans.
Solution 6
(a)
Installment per month(P) = Rs 140
Number of months(n) = 4 × 12 = 48
Let rate of interest(r)= r %p.a.
Maturity value= Rs (140 x 48) + Rs (137.20)r
Given maturity value= Rs 8,092
Then Rs(140 x 48)+Rs (137.20)r = Rs 8,092
137.20r = Rs 8,092 - Rs 6,720
r =
(b)
Installment per month(P) = Rs 300
Number of months(n) = 4 × 12 = 24
Let rate of interest(r)= r %p.a.
Maturity value= Rs (300 x 24)+Rs(75)r
Given maturity value = Rs 7,725
Then Rs(300 x 24) + Rs(75)r = Rs 7,725
75 r = Rs 7,725 - Rs 7,200
r =
Solution 7
Installment per month(P) = Rs 150
Number of months(n) = 8
Rate of interest(r)= 8% p.a.
The amount that Manish will get at the time of maturity
=Rs (150 x 8)+ Rs 36
=Rs 1,200+ Rs 36
= Rs 1,236 Ans.
Solution 8
Installment per month(P) = Rs 350
Number of months(n) = 12 + 3 = 15
Let rate of interest(r)= r %p.a.
Maturity value= Rs (350 x 15) + Rs (35)r
Given maturity value= Rs 5,565
Then Rs (350 x 15) + Rs (35)r = Rs 5,565
35r = Rs 5,565 - Rs 5,250
r =
Solution 9
Installment per month(P) = Rs 1,200
Number of months(n) = n
Let rate of interest(r)= 8 %p.a.
Maturity value= Rs (1,200 x n) + Rs 4n (n + 1)= Rs (1200n + 4n2 + 4n)
Given maturity value= Rs 12,440
Then 1200n + 4n2 + 4n = 12,440
Then number of months = 10 Ans.
Solution 10
Installment per month(P) = Rs 300
Number of months(n) = n
Let rate of interest(r)= 12 %p.a.
Maturity value= Rs (300 x n) + Rs 1.5n(n + 1)
= Rs (300n + 1.5n2 + 1.5n)
Given maturity value = Rs 8,100
Then 300n + 1.5n2 + 1.5n = 8,100
Then time = 2 years
Solution 11
(i)
Maturity value = Rs 67,500
Money deposited = Rs 2,500 x 24 = Rs 60,000
Then total interest earned = Rs 67,500 - Rs 60,000 = Rs 7,500 Ans.
(ii)
Installment per month(P) = Rs 2,500
Number of months(n) = 24
Let rate of interest(r)= r %p.a.
Then 625 r = 7500
Banking (Recurring Deposit Accounts) Exercise Ex. 2(B)
Solution 1
Installment per month(P) = Rs 600
Number of months(n) = 4 × 12 = 48
Rate of interest(r)= 8%p.a.
The amount that Manish will get at the time of maturity
=Rs (600 x 48)+ Rs 4,704
=Rs 28,800+ Rs 4,704
= Rs 33,504 Ans.
Solution 2
Installment per month(P) = Rs 80
Number of months(n) = 18
Let rate of interest(r)= r % p.a.
Maturity value= Rs (80 x 18) + Rs (11.4r)
Given maturity value= Rs 1,554
Then Rs (80 x 18)+Rs (11.4r) = Rs 1,554
11.4r = Rs 1,554 - Rs 1,440
Solution 3
Installment per month(P) = Rs 400
Number of months(n) = n
Let rate of interest(r)= 8 %p.a.
Maturity value= Rs (400 x n)+
Given maturity value= Rs 16,176
Then Rs (400 x n)+= Rs 16,176
1200n + 4n2 + 4n = Rs 48,528
4n2 + 1204n = Rs 48,528
n2 + 301n - 12132 = 0
(n + 337)(n - 36)=0
n = -337 or n = 36
Then number of months = 36 months = 3 years Ans.
Solution 4
Let installment per month = Rs P
Number of months(n) = 2 × 12 = 24
Rate of interest = 8%p.a.
Maturity value= Rs (P x 24) + Rs 2P = Rs 26P
Given maturity value = Rs 30,000
Solution 5
Let the monthly instalment be P
Interest = Rs. 8,325
Rate of interest = 7.5%
Time = 3 years = 36 months
Solution 6
Installment per month(P) = Rs 900
Number of months(n) = 48
Let rate of interest(r) = r %p.a.
Maturity value= Rs (900 x 48) + Rs (882)r
Given maturity value = Rs 52,020
Then Rs (900 x 48) + Rs(882)r = Rs 52,020
882r = Rs 52,020 - Rs 43,200
r =
Solution 7
Installment per month(P) = Rs 1,800
Number of months(n) = 4 × 12 = 48
Let rate of interest(r)= r %p.a.
Maturity value= Rs (1,800 x 48) + Rs(1,764)r
Given maturity value= Rs 1,08,450
Then Rs (1,800 x 48) + Rs(1764)r = Rs 1,08,450
1764r = Rs 1,08,450 - Rs 86,400
r =
Solution 8
Let the value of the monthly installment be Rs. P.
Thus, the value of his monthly installment is Rs. 200.
Solution 9
Solution 10
Solution 11
Interest, I = Rs. 1,200
Time, n = 2 years = 2 × 12 = 24 months
Rate, r = 6%
(i) To find: Monthly installment, P
Now,
So, the monthly installment is Rs. 800.
(ii) Total sum deposited = P × n = Rs. 800 × 24 = Rs. 19,200
∴ Amount of maturity = Total sum deposited + Interest on it
= Rs. (19,200 + 1,200)
= Rs. 20,400