Request a call back

Join NOW to get access to exclusive study material for best results

Class 11-science H C VERMA Solutions Physics Chapter 8 - Work and Energy

Work and Energy Exercise 132

Solution 1

  

Change in K.E. =   m[v2- u2 ]

 =   × 90 × [ 122 - 62 ]

 = 375J

Solution 2

Final speed v = u + at

= 10 + 3 × 5

v = 25m/s

Now,

  

=     × 2 × 252

K.E. = 625J

Solution 3

Resisting force

FR = F. d

FR = F d cosƟ = 100 ×  4

FR = 400 J

Solution 4

Work done,

W = mgh

= 5 × 9.8 × (sin30  × 10)

W = 245 J

Solution 5

W = F.d

W = Fd cosƟ

W = 2.5 × 2.5 × cosƟ

W = 6.25J

Now,

  

  

v = 28.8 m/s

And F = ma

a =   = 2.5/ 0.015 = 166.66 m/s2

So, v = u+at

t =  = 28.8/166.66 = 0.1728 sec

And average power, Pw  =  = 6.25/0.1728 = 36.1 W

Solution 6

r = r2 - r1

= (3  + 2 ) - (2  + 3 )

r =   -   

Work done W = F × r

W = (5  + 5 ) × (  -  )

W = 0

Solution 7

F = ma

W = F.d

W = 1×40

W =40 J

Work and Energy Exercise 133

Solution 8

Work done, W = 0d

 F dx ( F = a+bx)

W = (a +  bd)d

Solution 9

Force = μR and F = mg sin Ɵ 

mg sin Ɵ = μR 

Work done W = μR cos Ɵ 

W = mg sin Ɵ × cos 0 × S

W = 0.25 × 9.8 × 0.60 × 1 × 1

W = 1.5 J

Solution 10

 

(a) 𝜇k =   =  

  μk= (m + M)g

 

(b) Fs = μkR =  (m+M)g × mg

 Fs =   (m + M)

 

(c) W = Fs d

  W =   (m + M)

Solution 11

(a) R + P sin Ɵ = 2000 ……. 1

P cos Ɵ - 0.2 R = 0……..(2)

Solving 1 and 2 equations we get,

P =  

and work done W = PS cos Ɵ 

W =   

 

(b) For minimum force,

   [cosƟ + 0.2sinƟ]= 0 (from equation 1)

 Also, W = 40000/5 +tan Ɵ = 40000/5+0.2

 W = 7690 J

Solution 12

Force F = mg sinƟ

F = 100 × sin370 = 60N

(a) Work done W = Fd cosƟ

W = 60 × 2 × cos 0 = 120 J

 

  

 

(b)  In triangle ABC, AB = 2m, Ɵ = 37o

AC =h = 1.3

work done W = mgh

W = 100 × 1.2

W = 120 J

Solution 13

v2 - u2 = -2as

a =   

a =   × 25 = 8m/s2

frictional force F = ma = 500 × 8

F =4000 N

Solution 14

v2- u2 = 2as

a =   

a =   × 25

a = 8 m/s2

Force, F = ma = 500 × 8

F = 4000N

Solution 15

v = a   

v1 = 0 and v2 = a   

v22 - v21 = 2a'd

a' =  =   

Force F = ma| = (ma2)/2

Work done W = Fd cosƟ

W =   × d

W =   

Solution 16

(a) For a free body,

Force F = mg sinƟ + ma

a=   

a=   

a= 4m/s2

s = ut +  at2

s = 0 × 1 +   × 4 × 12

s = 2m

W = Fs = 20 × 2

W = 40 J

 

(b) W =Fs

s =   =   

s = 2

W = -mgh = -mg [s sin370]

W = -20 × 1.2

W = -24J

 

(c) v = u + at = 4 × 10

v = 40 m/s

  

  

K.E. = 16 J

Solution 17

(a) S = ut +   at2

S = 0 +   at2

S =5 m

Work done W = Fs cosƟ = 20 × 5 × 1

W = 100 J

 

(b) h = S sin Ɵ = S sin370 = 3m

work done, W = mgh = 2 × 10 × 3

W =60 J

 

(c) Frictional force Ff = mg sinƟ

and work done W = Ff s cosƟ

W = mg sinƟ s sinƟ

W = 20 × 0.60 × 5

W = 60 J

Solution 18

We know,

ma = μR 

a =    = μg 

a = 0.1 × 9.8 = 0.98 m/s2

and

v2 - u2 = 2as

s =    = (0 - 0.42)/ 2 × 0.98

s = 0.082 m

Work done

W = -μR sinƟ = - 0.1 × 2.5 × 0.082 × 1

W = - 0.02 J

Solution 19

Potential Energy

P.E. = mgh = 1.8 × 105× 9.8 × 50

P.E. = 882 x 105 J/hr

Electrical energy =   P.E. = 441 × 105 J/hr

Power P = (441 × 105)/3600

P = 12.25 × 103 W

No. of 100W lamps that can be lit = (12.25 × 103)/100

Number of lamps = 122.5 123

Solution 20

Initial P.E. at height h,

P.Ei = mgh = 6 × 9.8 × 2 = 117.6 J

Final P.E. at the floor,

P.Ef = mgh = 0

P.E. = 117.6 - 0

P.E. = 117.6 J

Solution 21

By law of conservation of energy

mgh +   m vi2 =   mvf

10 × 40 +  × 502 =   × vf2

v =vf = 57.4 m/s

v 58 m/s

Solution 22

Power, P =  W/t

W = P × t = 460 × 117.56 …..(1)

Also

W = F × d = F × 200 …..(2)

From 1 and 2

F = (460 × 117.56)/200 = 270.3

F = 270 N

Solution 23

(a) v =   = 100/10.54 m/s

K.E. =   mv2 =   × 50 × 9.4872

K.E. = 2250 J

 

(b) Weight =mg = 50 × 9.8 = -490 J

and work done

W = -R d =   × d =   

W = -4900 J

 

(c) Power P =  =  

P = 465 W

Solution 24

  = 30 kg/min = 0.5kg/s

and

Power =  × g × h = 0.5 × 9.81 × 10

P = 49 W

Horse power =  = 6.6 × 10-2 hp

Solution 25

Work done W = mgh +  mv2

W = 0.2 × 9.8 × 1.5 +(  × 0.2 × 32)

W = 3.84J

Solution 26

W = Fd cosƟ

W = mg cosƟ = 2000 ×10 × 12 × 1

W =24 × 104 J

P = = (24 ×104 )/60 = 4000W

Horse power = P/746 = 4000/746 = 5.3 hp

Solution 27

Max. acceleration,

a =   

a = (50/3 - 0)/5 = 3.33m/s2

Force

F = ma = 95 × 3.33

F = 316.6 N

Velocity

v =   = (3.5 × 746)/316.6

v=8.2 m/s

Solution 28

v2 - u2 = 2as

a = (0.42 - 0)/2 × 2

a = 0.04 m/s2

Force

F = ma - mg

and

Work done

W = Fs cosƟ = m(a-g) s cosƟ

W = 30 (0.04 - 9.8) × 2 × 1

W = -585.5 J -586 J

Work and Energy Exercise 134

Solution 29

Net force is

T - 2mg + 2ma = 0 ….. 1

T - mg - ma = 0….. 2

from equation 1 and 2

a =   =   

a =   m/s2

Now,

s = ut +   at2

s = 0 +   ×  × 12

s =   

Decrease in P.E. = mgh

P.E. = (2m - m) × 9.8 × (2/m)

P.E. = 19.6 J

Solution 30

T - 3g + 3a = 0  1

T - 2g - 2a = 0 2

Solving equation 1 and 2

a =  m/s2

Now,

S =   (2m - 1)

S =   [2 × 4 -1]

h = S = 6.86 m

Mass

m = m1 - m2

m = 3 - 2 = 1kg

Decrease in P.E. = mgh

P.E. = 1 × 9.8 × 6.86

P.E. = 67 J

Solution 31

Work done = change in K.E.

-μR S + mg = [  m1v12  m2v22] - 0

-μ × 40 × 2 + 1 × 10 =   (4 × 0.32+ 1 × 0.62 )

μ = 0.12

Solution 32

Work done by block

= T.E at A - T.E. at B

=   mv2+ mgh -0

=  × 0.1 × 52+ 0.1 × 10 × 0.2

W = 1.45 J

Work done by tube = - Work done by block

W'= -1.45 J

Solution 33

Work done,

W = K.ET - P.ET

W = (0 +   mv2) - mgh

W = [  × 1400 × 152] - [1400 × 9.8 × 10]

W = 20300J

Solution 34

(a) Work done W = mgh = 0.2 × 10 × 3.2 (to lift the block)

 W = 6.4 J

 

 

(b) Work done W = mg sinƟ (to slide the block)

 W = 6.4J

 

(c) When block falls on ground work done is

 W =   m v2 - 0

 6.4 =   × 0.2 × v2

 v = 8m/s

 

 (d) W =   m v2  - 0

 6.4 =   × 0.2 × v2

 v = 8 m/s

Solution 35

(a) Work done, W = 0 because no work is done by ladder.

 

(b) Work done W = μRS = fd

= - (200 ×3/10 ) × 10 = -600 J

 

(c) Work done, W = mg sinƟ × d = 200 × 8/10 × 10

W = 1600 J

Solution 36

By conservation of energy of point A and B

mgH =  m v2+ mgh

 

  

 

g × 1 =  v2+ g × 0.5

v = 9.8 = 0.3 m/s

After B, body obeys projectile motion, so

S = ut +  a t2

-0.5 = u sinƟ t +   (-9.8)t2

t = 0.31 s

and X = 4 cosƟ× t

X =1

Solution 37

Work done, W = mgh = 10 × 1

W = 10 J

Frictional force, F =μR = μmg = 0.2 × 10

F = 2N

and W = Fs

s =   =  = 5m

Solution 38

W = (m/l) dx g(x)

Total work done is :

W = l/30  (m/l) dx g(x)

W = mgl/18

Solution 39

Work done for small element is:

dW = μRx 

dw = μ(M/L dx) g(x)

Total work done is :

W = 2L/30 μ M/L g (×) dx

W = (2𝜇MgL)/9

Solution 40

Work done = change in P.E.

W = mgh - mgH

W = 1 × 10 × (0.8 - 1)

W = -2 J

Work and Energy Exercise 135

Solution 41

k = (mg)/x = 50/0.1 = 500N/m

Total energy T.E. =  m v 2+   k x2 ……. (1)

and

T.E. (at height h) =   k (h - ×)2 + mgh …. (2)

Equating 1 and 2

  m v 2+   k ×2 = ½ k (h - x)2+ mgh

 × 5 × 22+   × 500 × 0.12 =  × 500 (h - 0.12) + 5 × 10 × h

h = 0.2 m

h = 20cm

Solution 42

By law of conservation of energy:

  k x2 = mgh

  ×100 × 0.1 = mgh = 0.25 × 10 × h

h = 0.2m

h = 20 cm

Solution 43

By work energy principle

(i) for downward motion,

0-0 = (-mg sinƟ × s) - μRs -  kx2

80μ + 0.02R = 60 …… (1)

(ii) for upward motion

0 - 0 = (-mg sinƟ × s) - μRs +   kx2

-16 μ + 0.02 k = 12 …… (2)

Solving 1 and 2 we get,

μ = 0.5

and

k = 1000 N/m

Solution 44

Energy at A = Energy at B

  m v 2a =  m vb2+ k x2

mv2 =    + k x2

k =  

Solution 45

From figure

mgx =   k x2

x =   

Solution 46

By law of conservation of energy

 m v2 =   k1x2+   k2x2

So, v = ×√(k1 + k2)/m

Solution 47

(a) By law of conservation of energy:

  m v2 =   k x2

Max × = vm/k

 

(b) Velocity of the block will not be the same when it comes back to the original position, it will be of smaller magnitude and opposite direction.

Solution 48

By law of conservation of energy:

 mv2 =   k x2

v = 1.58 m/s2

Now, projectile motion

y = (u sinƟ )t -   g t2

Ɵ = 00 , y = -2

t = 0.63 sec

and

x = (u cosƟ)t = 1.58 × 0.63

x = 1m

Solution 49

Minimum velocity at A = v

Minimum velocity at B = 0

By law of conservation of energy

  m v2 = mg (2l)

v = 2gl

Solution 50

from figure

kx cosƟ = mg

40 x X x (0.4/[0.4 + x]) = 0.32 × 10

x = 0.1m

and

S = (h + x)-h2 = [(0.4+0.1)2 - 0.42]

S = 0.3m

Change in K.E. = Work done

  mv2 = - kx2+ mgs

  ×0.32 × v2 = -  x 40 × 0.12+0.32 × 10 × 0.3

v =1.5 m/s

Work and Energy Exercise 136

Solution 51

cosƟ = cos37° = BC/AC =4/5

AC = (h + x) =   

and x =AC - h =   - h =   

By work energy principle,

  k x2 =   m v2

v =  

Solution 52

vmin = 2gl

Total energy at A = Total energy at B

mgh =   m v2 [v = 2gl]

h = l

Solution 53

(a) By law of conservation of energy,

  mv12 =   m v22+ mgl

  × m × (gl )2 =   m v22+ mgl 

v2 =(8gl)

and

TB = (mv22)/R = [m × (8gl)2]/l

TB = 8mg

 

(b) By law of conservation at A and C

  mv12 =   m v32+ mgh

  × (logl)2 =   × v32+ g × 2l

v3 = (6gl)

and

 Tension

Tc =[ (mv32)/l ] - mg

Tc = 5mg

 

(c) By law of conservation of energy at A and D

  mv12 =   m v42+ mgh

  (logl)2 =   m v42+ gl (1 + cos600)

v4 = 7gl

and

Tension

TD = (mv2)/l - mg cos600

by putting v = 7gl we get,

TD = 6.5mg

Solution 54

from figure,

cosƟ =  

and

AC = AB cosƟ

AC = 0.4

and

CD = AD -AC

CD = 0.1 m

Energy is same at B and D

  m v2 = mgh

  v2 = 10 × 0.1

v =   m/s

Tension T = (mv2)/r +mg

T= (0.1 ×2)/0.5 + 0.1 × 10

T = 1.4 N

Solution 55

According to figure,

(mv2)/R = mg

v =   

Energy is same at A and P

  kx2 =   

x =  

Solution 56

Change in K.E. is given as

  m v2 -   mu2 =-mgh

v2 = 3gl - 2gl (1 +cosƟ) …….. 1

and

(mv2)/l = mg cosƟ

v2 =gl cosƟ ……… 2

from equation 1 and 2

3gl - 2gl - 2gl cosƟ = gl cosƟ

θ = cos-1( )

Thus,

Angle = 1800 - cos-1 ( )

Angle = cos-1 (-1/3)

Solution 57

(a) mg cosƟ = (mv2)/l

v = (gl cosƟ) ….. 1

Change in K.E. is given as :

  mv2  -  mu2 =mgh

  v2 -   (57)2 = g (1.5[ 1 +cosƟ])

v = (57 - 3g(1 + cosƟ) ……. 2

from equation 1 and 2

1.5 × g cosƟ = 57 - 3g (1+cosƟ)

Ɵ = 530

 

(b) v = 57 - 3g (1+cosƟ) Ɵ =53

v = 3m/s

 

(c) After, point B projectile motion will take place

H = OE + DC

H = 1.5 cosƟ + (u2sin2Ɵ)/2×g

H = 1.5 ×   + (9 ×0.82)/2×10

H = 1.2m

Solution 58

Total energy at A and B are same


 

K.EA+ P.EA = K.EB+ P.EB

 we get,

P.EA = P.EB

Thus maximum height is same as initial height.

 

(b)

At C, ½ mvc2 - 0 = mg (L/2)(1 - cos)

Vc = (gL (1-cos)) .. 1

 Again,

Vc = (gL cos) .. 2

equating 1 and 2

cos = …… 3

Now, BF =   +  cos 

BF = (5L/6)

 

(c)

(mvc2)/L-x = mg

vc = (g (L-x)) …. 1

Also,

½ mvc2 - 0 = mg (OC)

vc  = (2g (2x-L)) ….. 2

Equating 1 and 2

g (L-x) = 2g (2x - L)

x/L = 0.6

Solution 59

From figure,

(mv2)/R = mg cosƟ

v = (gRcosƟ) …….. 1

and

Change in K.E. = Work done

  m v2 - 0 = mg (R - R cosƟ)

v = (2gR [1-cosƟ]) ….. 2

from 1 and 2

gR cosƟ = 2gR (1-cosƟ)

Ɵ = cos-1( )

Solution 60

(a) Net force = mg cosƟ = 3/2 mg

(b) N = 0

and

 = mg cosƟ 

v = (gR cosƟ) …..1

and

  mv2 = mgR (cos30° - cosƟ)

v = (2gR3/2 - cosƟ]) …. 2

from equation 1 and 2 we get,

Ɵ = cos-1( )

and distance , l =R [Ɵ - π/6]

l = 0.43R

Solution 61

(a) from free body diagram 

 

  

 

N = mg - (mv2)/R

 

(b) When particle moves with maximum velocity then,

mg = (mv2)/R

v = gR 

 

(c ) From figure,

v1 = (gR)/2 ……. 1

and

(mv22)/R = mg cosƟ

v2 = (gR cosƟ) …… 2

Also, change in K.E. = Work done

 m v22 -   m v1= mgR (1 - cosƟ) …… 3

from equation 2 and 3

gR cosƟ = v12+ 2gR (1 - cosƟ)

Ɵ = cos-1( )

Work and Energy Exercise 137

Solution 62

(a) FAB = mg sinƟ

WB = FABS

WB = mg sinƟ × l ….. 1

and

WC = mgR(1-cosƟ) ….. 2

Total work done

W = WB+ WC

and

change in K.E. = Work done

v0 = [2g(R (1-cosƟ) + l sinƟ]

 

(b) By work energy equation

change in K.E. = Work done

vc = [6g (l sinƟ)+R (1-cosƟ) ]

and

Force,

F = (m vc2)/R

F = 6mg (l/R sinƟ+1-cosƟ)

 

(c) (mv2)/R = mg cosƟ

v = gR cosƟ ….. 1

Also,

v = [2gR (1-cosƟ)]….. 2

equating 1 and 2 we get,

Ɵ = cos-1 (  )

Solution 63

(a) G.P.E = dm g R cosƟ

= (mgR cosƟ dƟ)/l [dm = m/l R dƟ]

Total G.P.E = 0l/r(mgR2)/l cosƟ dƟ [Ɵ = l/R]

G.P.E =(mgR2)/l sin(l/R)

 

(b) K.E. = change in P.E

K.E. = (mgR2)/l [sin (l/R) + sinƟ - sin (Ɵ +l/R)]

 

(c) From above equation

K.E. = (mgR2)/l [sin (l/R) + sinƟ - sin (Ɵ +l/R)]

as Ɵ = 0

  = (gR/l)[1 - cos(l/R)]

Solution 64

 

  

 

According to figure,

m = ma cosƟ + mg sinƟ

Vdv = a R cosƟ dƟ + gR sin Ɵ dƟ [v = R dƟ/dt]

Integ 

V = [2R (a sin Ɵ + g - g cosƟ)]½

Get Latest Study Material for Academic year 24-25 Click here
×