Request a call back

Join NOW to get access to exclusive study material for best results

CBSE Class 10 Mathematics Previous Year Question Paper 2015 All India Set-1

Does the sound of Class 10 Maths intrigue you? Or, does it scare you away? All of these happen because it's not easy to handle the Board pressure for CBSE Class 10. But, we will surely help you to tackle the syllabus for Class 10 Maths by providing you with the Class 10 Revision NotesClass 10 Textbook SolutionsClass 10 Tests for all of the chapters available in CBSE Class 10 Maths. We know that scoring more marks in CBSE Class 10 Maths has never been this easy before. But, by referring to all of the study materials we provide at TopperLearning, you can easily score more marks in the Class 10 board examination.


The study materials are created by our subject experts that we offer for CBSE Class 10, very well know the syllabus and essential facts of CBSE Class 10. These study materials will help you understand all the CBSE Class 10 Maths concepts as we focus on providing solutions that simplify a subject's complex fundamentals. At TopperLearning, we believe in delivering quality solutions at a low cost, and we strictly follow the latest CBSE Class 10 syllabus. We make sure that these study materials are revised from time to time. Our TopperLearning packages involve all the study resources for CBSE Class 10, such as Solved question papersvideo lessons and revision notes to help you score high marks. We also provide you with the updated NCERT textbook Solutions and RD Sharma textbook solutions, which provide students with step-by-step explanations.


Our study materials have also introduced the Case Study Based Questions for CBSE Class 10 of all the chapters available in Class 10. These questions are designed based on the latest syllabus of CBSE Class 10.

So why wait when you can quickly get the CBSE class 10 plans.

Q 1. If the quadratic equation  begin mathsize 12px style px squared minus 2 square root of 5px plus 15 equals 0 end style has two equal roots then find the value of p.

 

Q 2. In the below figure, a tower AB is 20 m high and BC, its shadow on the ground, is begin mathsize 12px style 20 square root of 3 end style m long. Find the Sun’s altitude.

 

Q 3. Two different dice are tossed together. Find the probability that the product of the two numbers on the top of the dice is 6.            

 

Q 4. PQ is a chord of a circle with centre O and PT is a tangent. If ∠QPT = 60°, find ∠PRQ

 

 

Q 5. Two tangents RQ and RP are drawn from an external point R to the circle with centre O, If ∠PRQ = 120°,

then prove that OR = PR + RQ.

 

 

Q 6. A ΔABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of ∆ABC is 54 cm2, then find the lengths of sides AB and AC.

 

 

Q 7. Solve the following quadratic equation for x:

4x2 + 4bx – (a2 – b2) = 0

 

Q 8. In an A.P., if S6 + S7 = 167 and S10 = 235, then find the A.P., where Sn denotes the sum of its first n terms

 

Q 9. The points A(4, 7), B(p, 3) and C(7, 3) are the vertices of a right triangle, right-angled at B, Find the values of P.

 

Q 10. Find the relation between x and y if the points A(x, y), B (-5, 7) and C (-4, 5) are collinear.

 

Q 11. The 14th term of an A.P. is twice its 8th term. If its 6th term is -8, then find the sum of its first 20 terms.

 

Q 12. Solve for x:

begin mathsize 12px style square root of 3 straight x squared end root minus 2 square root of 2 straight x end root minus 2 square root of 3 equals 0 end style

 

Q 13. The angle of elevation of an aeroplane from point A on the ground is 60° After flight of 15 seconds, the angle of elevation changes to 30° If the aeroplane is flying at a constant height of begin mathsize 12px style 1500 square root of 3 end style m, find the speed of the plane in km/hr.

 

Q 14. If the coordinates of points A and B are (-2, -2) and (2, -4) respectively, find the coordinates of P such that AP = begin mathsize 12px style 3 over 7 end style, where P lies on the line segment AB.

 

Q 15. The probability of selecting a red ball at random from a jar that contains only red, blue and orange balls begin mathsize 12px style 1 fourth end style is. The probability of selecting a blue ball at random from the same jar begin mathsize 12px style 1 third end style. If the jar contains 10 orange balls, find the total number of balls in the jar.

 

Q 16. Find the area of the minor segment of a circle of radius 14 cm, when its central angle is 60°. Also find the area of the corresponding major segment.begin mathsize 12px style open square brackets Use space straight pi equals fraction numerator begin display style 22 end style over denominator begin display style 7 end style end fraction close square brackets end style

 

Q 17. Due to sudden floods, some welfare associations jointly requested the government to get 100 tents fixed immediately and offered to contribute 50% of the cost. If the lower part of each tent is of the form of a cylinder of diameter 4.2 m and height 4 m with the conical upper part of same diameter but height 2.8 m, and the canvas to be used costs Rs. 100 per sq. m, find the amount, the associations will have to pay. What values are shown by these associations?begin mathsize 12px style open square brackets Use space straight pi equals fraction numerator begin display style 22 end style over denominator begin display style 7 end style end fraction close square brackets end style

 

Q 18. A hemispherical bowl of internal diameter 36 cm contains liquid. This liquid is filled into 72 cylindrical bottles of diameter 6 cm. Find the height of each bottle, if 10% liquid is wasted in this transfer.

 

Q 19. A cubical block of side 10 cm is surmounted by a hemisphere. What is the largest diameter that the hemisphere can have? Find the cost of painting the total surface area of the solid so formed, at the rate of Rs. 5 per sq. cm. [Use ∏ = 3.14]

 

Q 20. 504 cones, each of diameter 3.5 cm and height 3 cm, are melted and recast into a metallic sphere, Find the diameter of the sphere and hence find its surface area.begin mathsize 12px style open square brackets Use space straight pi equals fraction numerator begin display style 22 end style over denominator begin display style 7 end style end fraction close square brackets end style

 

Q 21. The diagonal of a rectangular field is 16 metres more than the shorter side. If the longer side is 14 metres more than the shorter side, then find the lengths of the sides of the field.

 

Q 22. Find the 60th term of the AP 8, 10, 12… if it has a total of 60 terms and hence find the sum of its last 10 terms.

 

Q 23. A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of 6 km/h more than the first speed. If it takes 3 hours to complete the total journey, what is its first speed?

 

Q 24. Prove that the lengths of the tangents drawn from an external point to a circle are equal.

 

Q 25. Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

 

Q 26. Construct a ∆ABC in which AB = 6 cm, ∠A = 30° and ∠B = 60°, Construct another ∆AB’C’ similar to ∆ABC with base AB’ = 8 cm.

 

Q 27. At a point A, 20 metres above the level of water in a lake, the angle of elevation of a cloud is 30° The angle of depression of the reflection of the cloud in the lake, at A is 60°. Find the distance of the cloud from A.

 

Q 28. A card is drawn at random from a well-shuffled deck of playing cards. Find the probability that the card drawn is

i. a card of spade or an ace.
ii. a black king.
iii. neither a jack nor a king
iv. either a king or a queen.

 

Q 29. Find the values of k so that the area of the triangle with vertices (1, -1), (-4, 2k) and (-k, -5) is 24 sq. units.

 

Q 30. PQRS is square lawn with side PQ = 42 metres. Two circular flower beds are there on the sides PS and QR with centre at O, the intersections of its diagonals. Find the total area of the two flower beds (shaded parts).

 

Q 31. From each end of a solid metal cylinder, metal was scooped out in hemispherical from of same diameter. The height of the cylinder is 10 cm and its base is of radius 4.2 cm. The rest of the cylinder is melted and converted into a cylindrical wire of 1.4 cm thickness. Find the length of the wire.begin mathsize 12px style open square brackets Use space straight pi equals fraction numerator begin display style 22 end style over denominator begin display style 7 end style end fraction close square brackets end style

Why to choose our CBSE Class 10 Maths Study Materials?

  • Contain 950+ video lessons, 200+ revision notes, 8500+ questions and 15+ sample papers
  • Based on the latest CBSE syllabus
  • Free textbook solutions & doubt-solving sessions
  • Ideal for quick revision
  • Help score more marks in the examination
  • Increase paper-solving speed and confidence with weekly tests