# CBSE Class 10 Mathematics Previous Year Question Paper 2015 All India Set-1

Does the sound of Class 10 Maths intrigue you? Or, does it scare you away? It’s not easy to handle the Board pressure for Class 10. But, we can definitely help you tackle the syllabus for CBSE Class 10 Maths. Scoring more marks in Mathematics CBSE Class 10 has never been this easy before. You just have to start by referring to the CBSE class 10 maths notes.

Our study materials for CBSE Class 10 Mathematics are created by subject experts who teach students Maths. Our materials will help you to score high marks in your Mathematics examination as we focus on providing solutions which simplify the complex fundamentals of a subject. At TopperLearning, we believe in providing quality solutions at a low cost, and we strictly follow the latest CBSE syllabus; our study materials are revised from time to time. Our TopperLearning packages involve all the study resources for CBSE Class 10 such as solved question papers, video lessons and revision notes which will help you to score high marks. We also provide free NCERT and RD Sharma textbook solutions which provide students with step-by-step solutions.

**Q 1.** If the quadratic equation has two equal roots then find the value of p.

**Q 2.** In the below figure, a tower AB is 20 m high and BC, its shadow on the ground, is m long. Find the Sun’s altitude.

**Q 3.** Two different dice are tossed together. Find the probability that the product of the two numbers on the top of the dice is 6.

**Q 4.** PQ is a chord of a circle with centre O and PT is a tangent. If ∠QPT = 60°, find ∠PRQ

**Q 5.** Two tangents RQ and RP are drawn from an external point R to the circle with centre O, If ∠PRQ = 120°,

then prove that OR = PR + RQ.

**Q 6. **A ΔABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of ∆ABC is 54 cm^{2}, then find the lengths of sides AB and AC.

**Q 7. **Solve the following quadratic equation for x:

4x^{2} + 4bx – (a^{2} – b^{2}) = 0

**Q 8.** In an A.P., if S_{6} + S_{7} = 167 and S_{10} = 235, then find the A.P., where S_{n} denotes the sum of its first n terms

**Q 9. **The points A(4, 7), B(p, 3) and C(7, 3) are the vertices of a right triangle, right-angled at B, Find the values of P.

**Q 10. **Find the relation between x and y if the points A(x, y), B (-5, 7) and C (-4, 5) are collinear.

**Q 11.** The 14^{th} term of an A.P. is twice its 8^{th} term. If its 6^{th} term is -8, then find the sum of its first 20 terms.

**Q 12. **Solve for x:

**Q 13. **The angle of elevation of an aeroplane from point A on the ground is 60° After flight of 15 seconds, the angle of elevation changes to 30° If the aeroplane is flying at a constant height of m, find the speed of the plane in km/hr.

**Q 14. **If the coordinates of points A and B are (-2, -2) and (2, -4) respectively, find the coordinates of P such that AP = , where P lies on the line segment AB.

**Q 15.** The probability of selecting a red ball at random from a jar that contains only red, blue and orange balls is. The probability of selecting a blue ball at random from the same jar . If the jar contains 10 orange balls, find the total number of balls in the jar.

**Q 16. **Find the area of the minor segment of a circle of radius 14 cm, when its central angle is 60°. Also find the area of the corresponding major segment.

**Q 17.** Due to sudden floods, some welfare associations jointly requested the government to get 100 tents fixed immediately and offered to contribute 50% of the cost. If the lower part of each tent is of the form of a cylinder of diameter 4.2 m and height 4 m with the conical upper part of same diameter but height 2.8 m, and the canvas to be used costs Rs. 100 per sq. m, find the amount, the associations will have to pay. What values are shown by these associations?

**Q 18.** A hemispherical bowl of internal diameter 36 cm contains liquid. This liquid is filled into 72 cylindrical bottles of diameter 6 cm. Find the height of each bottle, if 10% liquid is wasted in this transfer.

**Q 19.** A cubical block of side 10 cm is surmounted by a hemisphere. What is the largest diameter that the hemisphere can have? Find the cost of painting the total surface area of the solid so formed, at the rate of Rs. 5 per sq. cm. [Use ∏ = 3.14]

**Q 20.** 504 cones, each of diameter 3.5 cm and height 3 cm, are melted and recast into a metallic sphere, Find the diameter of the sphere and hence find its surface area.

**Q 21.** The diagonal of a rectangular field is 16 metres more than the shorter side. If the longer side is 14 metres more than the shorter side, then find the lengths of the sides of the field.

**Q 22.** Find the 60^{th} term of the AP 8, 10, 12… if it has a total of 60 terms and hence find the sum of its last 10 terms.

**Q 23.** A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of 6 km/h more than the first speed. If it takes 3 hours to complete the total journey, what is its first speed?

**Q 24.** Prove that the lengths of the tangents drawn from an external point to a circle are equal.

**Q 25.** Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

**Q 26.** Construct a ∆ABC in which AB = 6 cm, ∠A = 30° and ∠B = 60°, Construct another ∆AB’C’ similar to ∆ABC with base AB’ = 8 cm.

**Q 27.** At a point A, 20 metres above the level of water in a lake, the angle of elevation of a cloud is 30° The angle of depression of the reflection of the cloud in the lake, at A is 60°. Find the distance of the cloud from A.

**Q 28.** A card is drawn at random from a well-shuffled deck of playing cards. Find the probability that the card drawn is

i. a card of spade or an ace.

ii. a black king.

iii. neither a jack nor a king

iv. either a king or a queen.

**Q 29.** Find the values of k so that the area of the triangle with vertices (1, -1), (-4, 2k) and (-k, -5) is 24 sq. units.

**Q 30.** PQRS is square lawn with side PQ = 42 metres. Two circular flower beds are there on the sides PS and QR with centre at O, the intersections of its diagonals. Find the total area of the two flower beds (shaded parts).

**Q 31.** From each end of a solid metal cylinder, metal was scooped out in hemispherical from of same diameter. The height of the cylinder is 10 cm and its base is of radius 4.2 cm. The rest of the cylinder is melted and converted into a cylindrical wire of 1.4 cm thickness. Find the length of the wire.

## Why to choose our CBSE Class 10 Maths Study Materials?

- Contain 950+ video lessons, 200+ revision notes, 8500+ questions and 15+ sample papers
- Based on the latest CBSE syllabus
- Free textbook solutions & doubt-solving sessions
- Ideal for quick revision
- Help score more marks in the examination
- Increase paper-solving speed and confidence with weekly tests

#### Kindly Sign up for a personalised experience

- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions

#### Sign Up

#### Verify mobile number

Enter the OTP sent to your number

Change