# Class 11-commerce RD SHARMA Solutions Maths Chapter 33 - Probability

## Probability Exercise Ex. 33.1

### Solution 1

### Solution 2

### Solution 3

### Solution 4

### Solution 5

### Solution 6

### Solution 7

### Solution 8

### Solution 9

### Solution 10

In this experiment, a coin is tossed and if the outcome is tail then a die is tossed once.

Otherwise, the coin is tossed again.

The possible outcome for coin is either head or tail.

The possible outcome for die is 1,2,3,4,5,6.

If the outcome for the coin is tail then sample space is S1={(T,1),(T,2),(T,3),(T,4),(T,5),(T,6)}

If the outcome is head then the sample space is S2={(H,H),(H,T)}

Therefore the required sample space is S={(T,1),(T,2),(T,3),(T,4),(T,5),(T,6),(H,H),(H,T)}

### Solution 11

### Solution 12

### Solution 13

### Solution 14

### Solution 15

### Solution 16

### Solution 17

In a random sampling, three items are selected so it could be any of the following:

a) All defective or

b) All non-defective or

c) Combination of defective and non defective.

Sample space associated with this experiment is

S={DDD, NDN, DND, DNN, NDD, DDN, NND, NNN}

### Solution 18

### Solution 19

### Solution 20

### Solution 21

### Solution 22

### Solution 23

### Solution 24

In this experiment, a die is rolled. If the outcome is 6 then experiment is over. Otherwise, die will be rolled again and again.

## Probability Exercise Ex. 33.2

### Solution 1

### Solution 2

### Solution 3

### Solution 4

### Solution 5

### Solution 6

### Solution 7

### Solution 8

### Solution 9

## Probability Exercise Ex. 33.3

### Solution 1

### Solution 2

### Solution 3

### Solution 4

### Solution 5

### Solution 6

### Solution 7

### Solution 9

### Solution 10

### Solution 11

### Solution 12

### Solution 13

### Solution 14

### Solution 15

### Solution 16

### Solution 17

### Solution 18

### Solution 19

### Solution 20

### Solution 21

### Solution 22

### Solution 23

### Solution 24

### Solution 25

### Solution 26

### Solution 27

### Solution 28

### Solution 29

### Solution 30

### Solution 31

### Solution 32

### Solution 33

### Solution 34

### Solution 35

### Solution 36

### Solution 37

### Solution 38

### Solution 39

### Solution 40

### Solution 41

### Solution 42

### Solution 43

### Solution 44

### Solution 45

### Solution 8

## Probability Exercise Ex. 33.4

### Solution 1(a)

### Solution 1(b)

### Solution 1(c)

### Solution 2

### Solution 3

### Solution 4

### Solution 5

### Solution 6

### Solution 7

### Solution 8

### Solution 9

### Solution 10

### Solution 11

### Solution 12

### Solution 13

### Solution 14

### Solution 15

### Solution 16

### Solution 17

### Solution 18

### Solution 19

### Solution 20

### Solution 21

### Solution 22

### Solution 23

### Solution 24

### Solution 25

### Solution 26

### Solution 27

### Solution 28

## Probability Exercise Ex. 33VSAQ

### Solution 1

### Solution 2

### Solution 3

### Solution 4

### Solution 5

### Solution 6

### Solution 7

### Solution 8

### Solution 9

### Solution 10