Class 8 MAHARASHTRA STATE TEXTBOOK BUREAU Solutions Maths Chapter 6: Factorisation of Algebraic expressions
Factorisation of Algebraic expressions Exercise Ex. 6.1
Solution 1(i)
Here, 18 is multiplication of 6 and 3 also, 9x = 6x + 3x.
Hence,
x2 + 9x + 18
= x2 + 6x + 3x + 18
= x (x + 6) + 3(x + 6)
= (x + 6)(x + 3)
Solution 1(ii)
Here, 9 is multiplication of 9 and 1 also, -10x = -9x - x.
Hence,
x2 - 10x + 9
= x2 - 9x - x + 9
= x(x - 9) - (x - 9)
= (x - 9)(x - 1)
Solution 1(iii)
Here, 144 is multiplication of 12 and 12 also, 24y = 12y + 12y.
Hence,
y2 + 24y + 144
= y2 + 12y + 12y + 144
= y(y + 12) + 12(y + 12)
= (y + 12)(y + 12)
Solution 1(iv)
5y2 + 5y - 10
= 5(y2 + y - 2)
Here, 2 is multiplication of 1 and 2 also, y = 2y - y.
Hence,
= 5(y2 + y - 2)
= 5(y2 + 2y - y - 2)
= 5[y(y + 2) - (y + 2)]
= 5(y + 2)(y - 1)
Solution 1(v)
Here, 35 is multiplication of 7 and 5 also, -2p = -7p + 5p.
Hence,
p2 - 2p - 35
= p2 - 7p + 5p - 35
= p(p - 7) + 5(p - 7)
= (p - 7)(p + 5)
Solution 1(vi)
Here, 44 is multiplication of 11 and 4 also, -7p = -11p + 4p.
Hence,
p2 - 7p - 44
= p2 - 11p + 4p - 44
= p(p - 11) + 4(p - 11)
= (p - 11)(p + 4)
Solution 1(vii)
Here, 120 is multiplication of 15 and 8 also, -23m = -15m - 8m.
Hence,
m2 - 23m + 120
= m2 - 15m - 8m + 120
= m(m - 15) - 8 (m - 15)
= (m - 15)(m - 8)
Solution 1(viii)
Here, 100 is multiplication of 20 and 5 also, -25m = -20m - 5m.
Hence,
m2 - 25m + 100
= m2 - 20m - 5m + 100
= m(m - 20) - 5(m - 20)
= (m - 20)(m - 5)
Solution 1(ix)
Here, 15 × 3 (Coefficient of x2) = 45 is multiplication of 5 and 9 also, 14m = 9m + 5m.
Hence,
3x2 + 14x + 15
= 3x2 + 9x + 5x + 15
= 3x(x + 3) + 5(x + 3)
= (x + 3)(3x + 5)
Solution 1(x)
Here, 45 × 2(Coefficient of x2) = 90 is multiplication of 10 and 9 also,
x = 10x - 9x
Hence,
2x2 + x - 45
= 2x2 + 10x - 9x - 45
= 2x(x + 5) - 9(x + 5)
= (x + 5)(2x - 9)
Solution 1(xi)
Here, 8 × 20(Coefficient of x2) = 160 is multiplication of 16 and 10 also,
-26x = -16x - 10x
Hence,
20x2 - 26x + 8
= 20x2 - 16x - 10x + 8
= 4x(5x - 4) - 2(5x - 4)
= (5x - 4)(4x - 2)
= (5x - 4)2(2x - 1)
= 2(5x - 4)(2x - 1)
Solution 1(xii)
Here, 3 × 44(Coefficient of x2) = 132 is multiplication of 11 and 12 also,
-x = -12x + 11x
Hence,
44x2 - x - 3
= 44x2 - 12x + 11x - 3
= 4x(11x - 3) + (11x - 3)
= (11x - 3)(4x + 1)
Factorisation of Algebraic expressions Exercise Ex. 6.2
Solution 1(i)
x3 + 64y3 = x3 + (4y)3
We know that a3 + b3 = (a + b)(a2 - ab + b2)
Comparing x3 + (4y)3 with a3 + b3 we get
a = x and b = 4y
x3 + 64y3
= (x + 4y)[x2 - 4xy + (4y)2]
= (x + 4y) (x2 - 4xy + 16y2)
Solution 1(ii)
125p3 + q3= (5p)3 + q3
We know that a3 + b3 = (a + b)(a2 - ab + b2)
Comparing (5p)3 + q3 with a3 + b3 we get
a = 5p and b = q
125p3 + q3
= (5p + q)[(5p)2 - 5pq + q2]
= (5p + q) (25p2 - 5pq + q2)
Solution 1(iii)
125k3 + 27m3 = (5k)3 + (3m)3
We know that a3 + b3 = (a + b)(a2 - ab + b2)
Comparing (5k)3 + (3m)3 with a3 + b3 we get
a = 5k and b = 3m
125k3 + 27m3
= (5k + 3m)[(5k)2 - 5k × 3m + (3m)2]
= (5k + 3m) (25k2 - 15km + 9m2)
Solution 1(iv)
2l3 + 432m3 = 2(l3 + 216m3) = 2[l3 + (6m)3]
We know that a3 + b3 = (a + b)(a2 - ab + b2)
Comparing (l3 + 216m3) with a3 + b3 we get
a = l and b = 6m
2l3 + 432m3
= 2[l3 + (6m)3]
= 2(l + 6m)(l2 - l × 6m + (6m)2]
= 2(l + 6m)(l2 - 6lm + 36m2)
Solution 1(v)
24a3 + 81b3 = 3(8a3 + 27b3) = 3[(2a)3 + (3b)3]
We know that A3 + B3 = (A + B)(A2 - AB + B2)
Comparing [8a3 + (3b)3] with A3 + B3 we get
A = 2a and B = 3b
24a3 + 81b3
= 3(8a3 + 27b3)
= 3[(2a)3 + (3b)3]
= 3(2a + 3b)[(2a)2 - 2a × 3b + (3b)2]
= 3(2a+ 3b)(4a2 - 6ab + 9b2)
Solution 1(vi)
=
We know that a3 + b3 = (a + b)(a2 - ab + b2)
Comparing with a3 + b3 we get
a = y and b =
=
=
Solution 1(vii)
=
We know that A3 + B3 = (A + B)(A2 - AB + B2)
Comparing with A3 + B3 we get
A = a and B =
=
=
Solution 1(viii)
=
We know that a3 + b3 = (a + b)(a2 - ab + b2)
Comparingwith a3 + b3 we get
a = 1 and b =
=
=
Factorisation of Algebraic expressions Exercise Ex. 6.3
Solution 1(i)
y3 - 27 = y3 - 33
We know that a3 - b3 = (a - b)(a2 + ab + b2)
Comparing y3 - 33 with a3 - b3 we get
a = y and b = 3
y3 - 27
= (y - 3)(y2 + 3y + 32)
= (y - 3)(y2 + 3y + 9)
Solution 1(ii)
x3 - 64y3 = x3 - (4y)3
We know that a3 - b3 = (a - b)(a2 + ab + b2)
Comparing x3 - (4y)3 with a3 - b3 we get
a = x and b = 4y
x3 - 64y3
= (x - 4y)[x2 + 4xy + (4y)2]
= (x - 4y)(x2 + 4xy + 16y2)
Solution 1(iii)
27m3 - 216n3
= 27(m3 - 8n3)
=27[m3 - (2n)3]
We know that a3 - b3 = (a - b)(a2 + ab + b2)
Comparing m3 - (2n)3 with a3 - b3 we get
a = m and b = 2n
27m3 - 216n3
= 27[m3 - (2n)3]
= 27(m - 2n)[m2 + m × 2n + (2n)2]
= 27(m - 2n)(m2 + 2mn + 4n2)
Solution 1(iv)
125y3 - 1
= (5y)3 - 1
We know that a3 - b3 = (a - b)(a2 + ab + b2)
Comparing (5y)3 - 1 with a3 - b3 we get
a = 5y and b = 1
125y3 - 1
= (5y - 1)[(5y)2 + 5y + 1]
= (5y - 1)(25y2 + 5y + 1)
Solution 1(v)
=
We know that a3 - b3 = (a - b)(a2 + ab + b2)
Comparing with a3 - b3 we get
a = 2p and b =
=
=
Solution 1(vi)
343a3 - 512b3
= (7a)3 - (8b)3
We know that A3 - B3 = (A - B)(A2 + AB + B2)
Comparing (7a)3 - (8b)3 with A3 - B3 we get
A = 7a and B = 8b
343a3 - 512b3
= (7a - 8b)[(7a)2 + 7a × 8b + (8b)2]
= (7a - 8b)(49a2 + 56ab + 64b2)
Solution 1(vii)
64x3 - 729y3
= (4x)3 - (9y)3
We know that a3 - b3 = (a - b)(a2 + ab + b2)
Comparing (4x)3 - (9y)3 with a3 - b3 we get
a = 4x and b = 9y
64x3 - 729y3
= (4x - 9y)[(4x)2 + 4x × 9y + (9y)2]
= (4x - 9y)(16x2 + 36xy + 81y2)
Solution 1(viii)
=
We know that A3 - B3 = (A - B)(A2 + AB + B2)
Comparing with A3 - B3 we get
A = a and B =
=
=
=
Solution 2(i)
we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Consider, (x + y)3 = x3 + 3x2y + 3xy2 + y3
Also, (a - b)3 = a3 - 3a2b + 3ab2 - b3
Consider, (x - y)3 = x3 - 3x2y + 3xy2 - y3
(x + y)3 - (x - y)3
= x3 + 3x2y + 3xy2 + y3 - (x3 - 3x2y + 3xy2 - y3)
= x3 + 3x2y + 3xy2 + y3 - x3 + 3x2y - 3xy2 + y3
= 3x2y + 3x2y + y3 + y3
= 6x2y + 2y3
= 2y(3x2 + y2)
Solution 2(ii)
we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Consider, (3a + 5b)3 = (3a)3 + 3(3a)2(5b) + 3(3a)(5b)2 + (5b)3
= 27a3 + 135a2b + 225ab2 + 125b3
Also, (a - b)3 = a3 - 3a2b + 3ab2 - b3
Consider, (3a - 5b)3 = (3a)3 - 3(3a)2(5b) + 3(3a)(5b)2 - (5b)3
= 27a3 - 135a2b + 225ab2 - 125b3
(3a + 5b)3 - (3a - 5b)3
= 27a3 + 135a2b + 225ab2 + 125b3 - (27a3 - 135a2b + 225ab2 - 125b3)
= 27a3 + 135a2b + 225ab2 + 125b3 - 27a3 + 135a2b - 225ab2 + 125b3
= 135a2b + 135a2b + 125b3 + 125b3
= 270a2b + 250b3
Solution 2(iii)
we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)3 - a 3 - b3
= a3 + 3a2b + 3ab2 + b3 - a3 - b3
= 3a2b + 3ab2
Solution 2(iv)
we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
p3 - (p + 1)3
= p3 - (p3 + 3p2 + 3p + 1)
= p3 - p3 - 3p2 - 3p - 1
= - 3p2 - 3p - 1
Solution 2(v)
we know that (a - b)3 = a3 - 3a2b + 3ab2 - b3
(3xy - 2ab)3 = (3xy)3 - 3 × (3xy)2 × 2ab + 3 × (3xy) × (2ab)2 - (2ab)3
= 27x3y3 - 3 × 9x2y2 × 2ab + 9xy × 4a2b2 - 8a3b3
= 27x3y3 - 54x2y2ab + 36xya2b2 - 8a3b3
Also, (a + b)3 = a3 + 3a2b + 3ab2 + b3
(3xy + 2ab)3 = (3xy)3 + 3 × (3xy)2 × 2ab + 3 × (3xy) × (2ab)2 + (2ab)3
= 27x3y3 + 3 × 9x2y2 × 2ab + 9xy × 4a2b2 + 8a3b3
= 27x3y3 + 54x2y2ab + 36xya2b2 + 8a3b3
(3xy - 2ab)3 - (3xy + 2ab)3
= 27x3y3 - 54x2y2ab + 36xya2b2 - 8a3b3
= - (27x3y3 + 54x2y2ab + 36xya2b2 + 8a3b3
= - 54x2y2ab - 54x2y2ab - 8a3b3 - 8a3b3
= -108 x2y2ab - 8a3b3
Factorisation of Algebraic expressions Exercise Ex. 6.4
Solution 1(i)
We know that m2 - n2 = (m + n)(m - n) and
m3 - n3 = (m - n)(m2 + mn + n2)
=
=
Solution 1(ii)
Consider,
a2 + 10a + 21
= a2 + 7a + 3a + 21
= a(a + 7) + 3(a + 7)
= (a + 7)(a + 3)
a2 + 6a - 7
= a2 + 7a - a - 7
= a(a + 7) - (a + 7)
= (a + 7)(a - 1)
Consider,
a2 - 1 = (a + 1)(a - 1)
Now,
=
= a + 1
Solution 1(iii)
We know that 8x3 - 27y3 = (2x - 3y)[(2x)2 + (2x)(3y) + (3y)2]
= (2x - 3y)[4x2 + 6xy + 9y2]
Also, 4x2 - 9y2 = (2x)2 - (3y)2
= (2x + 3y)(2x - 3y)
Now,
=
=
Solution 1(iv)
Consider,
x2 - 5x - 24 = x2 - 8x + 3x - 24
= x(x - 8) + 3(x - 8)
= (x - 8)(x + 3)
Also, x2 - 64 = (x + 8)(x - 8)
Now,
=
= 1
Solution 1(v)
Consider,
3x2 - x - 2 = 3x2 - 3x + 2x - 2
= 3x(x - 1) + 2(x - 1)
= (x - 1)(3x + 2)
Consider,
x2 - 7x + 12
= x2 - 4x - 3x + 12
= x(x - 4) - 3(x - 4)
= (x - 4)(x - 3)
Consider,
3x2 - 7x - 6
= 3x2 - 9x + 2x - 6
= 3x(x - 3) + 2(x - 3)
= (x - 3)(3x + 2)
=
=
=
Solution 1(vi)
Consider,
4x2 - 11x + 6
= 4x2 - 8x - 3x + 6
= 4x(x - 2) - 3(x - 2)
= (x - 2)(4x - 3)
Consider,
16x2 - 9
= (4x + 3)(4x - 3)
Now,
=
=
Solution 1(vii)
Consider,
a3 - 27 = (a - 3)(a2 + 3a + 9)
Consider,
5a2 - 16a + 3
= 5a2 - 15a - a + 3
= 5a(a - 3) - (a - 3)
= (a - 3)(5a - 1)
Consider,
25a2 - 1
= (5a + 1)(5a - 1)
Now,
=
=
= 5a + 1
Solution 1(viii)
Consider,
1 - 2x + x2
= 1 - x - x + x2
= (1 - x) - x (1 - x)
= (1 - x)(1 - x)
Consider,
1 - x3 = (1 - x)(1 + x + x2)
Now,
=
=