Request a call back

Join NOW to get access to exclusive study material for best results

Class 8 MAHARASHTRA STATE TEXTBOOK BUREAU Solutions Maths Chapter 6: Factorisation of Algebraic expressions

Factorisation of Algebraic expressions Exercise Ex. 6.1

Solution 1(i)

Here, 18 is multiplication of 6 and 3 also, 9x = 6x + 3x.

Hence,

x2 + 9x + 18

= x2 + 6x + 3x + 18

= x (x + 6) + 3(x + 6)

= (x + 6)(x + 3)

Solution 1(ii)

Here, 9 is multiplication of 9 and 1 also, -10x = -9x - x.

Hence,

x2 - 10x + 9

= x2 - 9x - x + 9

= x(x - 9) - (x - 9)

= (x - 9)(x - 1)

Solution 1(iii)

Here, 144 is multiplication of 12 and 12 also, 24y = 12y + 12y.

Hence,

y2 + 24y + 144

= y2 + 12y + 12y + 144

= y(y + 12) + 12(y + 12)

= (y + 12)(y + 12)

Solution 1(iv)

5y2 + 5y - 10

= 5(y2 + y - 2)

Here, 2 is multiplication of 1 and 2 also, y = 2y - y.

Hence,

= 5(y2 + y - 2)

= 5(y2 + 2y - y - 2)

= 5[y(y + 2) - (y + 2)]

= 5(y + 2)(y - 1)

Solution 1(v)

Here, 35 is multiplication of 7 and 5 also, -2p = -7p + 5p.

Hence,

p2 - 2p - 35

= p2 - 7p + 5p - 35

= p(p - 7) + 5(p - 7)

= (p - 7)(p + 5)

Solution 1(vi)

Here, 44 is multiplication of 11 and 4 also, -7p = -11p + 4p.

Hence,

p2 - 7p - 44

= p2 - 11p + 4p - 44

= p(p - 11) + 4(p - 11)

= (p - 11)(p + 4)

Solution 1(vii)

Here, 120 is multiplication of 15 and 8 also, -23m = -15m - 8m.

Hence,

m2 - 23m + 120

= m2 - 15m - 8m + 120

= m(m - 15) - 8 (m - 15)

= (m - 15)(m - 8)

Solution 1(viii)

Here, 100 is multiplication of 20 and 5 also, -25m = -20m - 5m.

Hence,

m2 - 25m + 100

= m2 - 20m - 5m + 100

= m(m - 20) - 5(m - 20)

= (m - 20)(m - 5)

Solution 1(ix)

Here, 15 × 3 (Coefficient of x2) = 45 is multiplication of 5 and 9 also, 14m = 9m + 5m.

Hence,

3x2 + 14x + 15

= 3x2 + 9x + 5x + 15

= 3x(x + 3) + 5(x + 3)

= (x + 3)(3x + 5)

Solution 1(x)

Here, 45 × 2(Coefficient of x2) = 90 is multiplication of 10 and 9 also,

x = 10x - 9x

Hence,

2x2 + x - 45

= 2x2 + 10x - 9x - 45

= 2x(x + 5) - 9(x + 5)

= (x + 5)(2x - 9)

Solution 1(xi)

Here, 8 × 20(Coefficient of x2) = 160 is multiplication of 16 and 10 also,

-26x = -16x - 10x

Hence,

20x2 - 26x + 8

= 20x2 - 16x - 10x + 8

= 4x(5x - 4) - 2(5x - 4)

= (5x - 4)(4x - 2)

= (5x - 4)2(2x - 1)

= 2(5x - 4)(2x - 1)

Solution 1(xii)

Here, 3 × 44(Coefficient of x2) = 132 is multiplication of 11 and 12 also,

-x = -12x + 11x

Hence,

44x2 - x - 3

= 44x2 - 12x + 11x - 3

= 4x(11x - 3) + (11x - 3)

= (11x - 3)(4x + 1)

Factorisation of Algebraic expressions Exercise Ex. 6.2

Solution 1(i)

x3 + 64y3 = x3 + (4y)3

 

We know that a3 + b3 = (a + b)(a2 - ab + b2)

Comparing x3 + (4y)3 with a3 + b3 we get

a = x and b = 4y

 

x3 + 64y3

= (x + 4y)[x2 - 4xy + (4y)2]

= (x + 4y) (x2 - 4xy + 16y2)

Solution 1(ii)

125p3 + q3= (5p)3 + q3

 

We know that a3 + b3 = (a + b)(a2 - ab + b2)

Comparing (5p)3 + q3 with a3 + b3 we get

a = 5p and b = q

 

125p3 + q3

= (5p + q)[(5p)2 - 5pq + q2]

= (5p + q) (25p2 - 5pq + q2)

Solution 1(iii)

125k3 + 27m3 = (5k)3 + (3m)3

 

We know that a3 + b3 = (a + b)(a2 - ab + b2)

Comparing (5k)3 + (3m)3 with a3 + b3 we get

a = 5k and b = 3m

 

125k3 + 27m3

= (5k + 3m)[(5k)2 - 5k × 3m + (3m)2]

= (5k + 3m) (25k2 - 15km + 9m2)

Solution 1(iv)

2l3 + 432m3 = 2(l3 + 216m3) = 2[l3 + (6m)3]

 

We know that a3 + b3 = (a + b)(a2 - ab + b2)

Comparing (l3 + 216m3) with a3 + b3 we get

a = l and b = 6m

 

2l3 + 432m3

= 2[l3 + (6m)3]

= 2(l + 6m)(l2 - l × 6m + (6m)2]

= 2(l + 6m)(l2 - 6lm + 36m2)

Solution 1(v)

24a3 + 81b3 = 3(8a3 + 27b3) = 3[(2a)3 + (3b)3]

 

We know that A3 + B3 = (A + B)(A2 - AB + B2)

Comparing [8a3 + (3b)3] with A3 + B3 we get

A = 2a and B = 3b

 

24a3 + 81b3

= 3(8a3 + 27b3)

= 3[(2a)3 + (3b)3]

= 3(2a + 3b)[(2a)2 - 2a × 3b + (3b)2]

= 3(2a+ 3b)(4a2 - 6ab + 9b2)

Solution 1(vi)

 =   

We know that a3 + b3 = (a + b)(a2 - ab + b2)

Comparing  with a3 + b3 we get

a = y and b =   

  

=   

=   

Solution 1(vii)

 =   

We know that A3 + B3 = (A + B)(A2 - AB + B2)

Comparing  with A3 + B3 we get

A = a and B =   

 

  

=   

=   

Solution 1(viii)

  =   

We know that a3 + b3 = (a + b)(a2 - ab + b2)

Comparing with a3 + b3 we get

a = 1 and b =   

 

  

=   

=   

Factorisation of Algebraic expressions Exercise Ex. 6.3

Solution 1(i)

y3 - 27 = y3 - 33

 

We know that a3 - b3 = (a - b)(a2 + ab + b2)

Comparing y3 - 33 with a3 - b3 we get

a = y and b = 3

 

y3 - 27

= (y - 3)(y2 + 3y + 32)

= (y - 3)(y2 + 3y + 9)

Solution 1(ii)

x3 - 64y3 = x3 - (4y)3

 

We know that a3 - b3 = (a - b)(a2 + ab + b2)

Comparing x3 - (4y)3 with a3 - b3 we get

a = x and b = 4y

 

x3 - 64y3

= (x - 4y)[x2 + 4xy + (4y)2]

= (x - 4y)(x2 + 4xy + 16y2)

Solution 1(iii)

27m3 - 216n3

= 27(m3 - 8n3)

=27[m3 - (2n)3]

 

We know that a3 - b3 = (a - b)(a2 + ab + b2)

Comparing m3 - (2n)3 with a3 - b3 we get

a = m and b = 2n

 

27m3 - 216n3

= 27[m3 - (2n)3]

= 27(m - 2n)[m2 + m × 2n + (2n)2]

= 27(m - 2n)(m2 + 2mn + 4n2)

Solution 1(iv)

125y3 - 1

= (5y)3 - 1

We know that a3 - b3 = (a - b)(a2 + ab + b2)

Comparing (5y)3 - 1 with a3 - b3 we get

a = 5y and b = 1

 

125y3 - 1

= (5y - 1)[(5y)2 + 5y + 1]

= (5y - 1)(25y2 + 5y + 1)

Solution 1(v)

   =   

 

We know that a3 - b3 = (a - b)(a2 + ab + b2)

Comparing   with a3 - b3 we get

a = 2p and b =   

 

  

=   

=   

Solution 1(vi)

343a3 - 512b3

= (7a)3 - (8b)3

We know that A3 - B3 = (A - B)(A2 + AB + B2)

Comparing (7a)3 - (8b)3 with A3 - B3 we get

A = 7a and B = 8b

 

343a3 - 512b3

= (7a - 8b)[(7a)2 + 7a × 8b + (8b)2]

= (7a - 8b)(49a2 + 56ab + 64b2)

Solution 1(vii)

64x3 - 729y3

= (4x)3 - (9y)3

We know that a3 - b3 = (a - b)(a2 + ab + b2)

Comparing (4x)3 - (9y)3 with a3 - b3 we get

a = 4x and b = 9y

 

64x3 - 729y3

= (4x - 9y)[(4x)2 + 4x × 9y + (9y)2]

= (4x - 9y)(16x2 + 36xy + 81y2)

Solution 1(viii)

  =   

We know that A3 - B3 = (A - B)(A2 + AB + B2)

Comparing   with A3 - B3 we get

A = a and B =   

 

  

=   

=   

=   

Solution 2(i)

we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3

Consider, (x + y)3 = x3 + 3x2y + 3xy2 + y3

 

Also, (a - b)3 = a3 - 3a2b + 3ab2 - b3

Consider, (x - y)3 = x3 - 3x2y + 3xy2 - y3

 

(x + y)3 - (x - y)3

= x3 + 3x2y + 3xy2 + y3 - (x3 - 3x2y + 3xy2 - y3)

= x3 + 3x2y + 3xy2 + y3 - x3 + 3x2y - 3xy2 + y3

= 3x2y + 3x2y + y3 + y3

= 6x2y + 2y3

= 2y(3x2 + y2) 

Solution 2(ii)

we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3

Consider, (3a + 5b)3 = (3a)3 + 3(3a)2(5b) + 3(3a)(5b)2 + (5b)3

= 27a3 + 135a2b + 225ab2 + 125b3

 

Also, (a - b)3 = a3 - 3a2b + 3ab2 - b3

Consider, (3a - 5b)3 = (3a)3 - 3(3a)2(5b) + 3(3a)(5b)2 - (5b)3

= 27a3 - 135a2b + 225ab2 - 125b3

 

(3a + 5b)3 - (3a - 5b)3

= 27a3 + 135a2b + 225ab2 + 125b3 - (27a3 - 135a2b + 225ab2 - 125b3)

= 27a3 + 135a2b + 225ab2 + 125b3 - 27a3 + 135a2b - 225ab2 + 125b3

= 135a2b + 135a2b + 125b3 + 125b3

= 270a2b + 250b3

Solution 2(iii)

we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)3 - a 3 - b3

= a3 + 3a2b + 3ab2 + b3 - a3 - b3

= 3a2b + 3ab2

Solution 2(iv)

we know that (a + b)3 = a3 + 3a2b + 3ab2 + b3

p3 - (p + 1)3

= p3 - (p3 + 3p2 + 3p + 1)

= p3 - p3 - 3p2 - 3p - 1

= - 3p2 - 3p - 1

Solution 2(v)

we know that (a - b)3 = a3 - 3a2b + 3ab2 - b3

(3xy - 2ab)3 = (3xy)3 - 3 × (3xy)2 × 2ab + 3 × (3xy) × (2ab)2 - (2ab)3

= 27x3y3 - 3 × 9x2y2 × 2ab + 9xy × 4a2b2 - 8a3b3

= 27x3y3 - 54x2y2ab + 36xya2b2 - 8a3b3

Also, (a + b)3 = a3 + 3a2b + 3ab2 + b3

(3xy + 2ab)3 = (3xy)3 + 3 × (3xy)2 × 2ab + 3 × (3xy) × (2ab)2 + (2ab)3

= 27x3y3 + 3 × 9x2y2 × 2ab + 9xy × 4a2b2 + 8a3b3

= 27x3y3 + 54x2y2ab + 36xya2b2 + 8a3b3

(3xy - 2ab)3 - (3xy + 2ab)3

= 27x3y3 - 54x2y2ab + 36xya2b2 - 8a3b3

= - (27x3y3 + 54x2y2ab + 36xya2b2 + 8a3b3

= - 54x2y2ab - 54x2y2ab - 8a3b3 - 8a3b3

= -108 x2y2ab - 8a3b3

Factorisation of Algebraic expressions Exercise Ex. 6.4

Solution 1(i)

  

We know that m2 - n2 = (m + n)(m - n) and

m3 - n3 = (m - n)(m2 + mn + n2)

 

=   

 

=   

Solution 1(ii)

Consider,

a2 + 10a + 21

= a2 + 7a + 3a + 21

= a(a + 7) + 3(a + 7)

= (a + 7)(a + 3)

 

a2 + 6a - 7

= a2 + 7a - a - 7

= a(a + 7) - (a + 7)

= (a + 7)(a - 1)

 

Consider, 

a2 - 1 = (a + 1)(a - 1)

 

Now,

  

 

=   

 

= a + 1

Solution 1(iii)

   

We know that 8x3 - 27y3 = (2x - 3y)[(2x)2 + (2x)(3y) + (3y)2]

= (2x - 3y)[4x2 + 6xy + 9y2]

 

Also, 4x2 - 9y2 = (2x)2 - (3y)2

= (2x + 3y)(2x - 3y)

 

Now,

  

=   

 

=   

Solution 1(iv)

  

Consider,

x2 - 5x - 24 = x2 - 8x + 3x - 24

= x(x - 8) + 3(x - 8)

= (x - 8)(x + 3)

 

Also, x2 - 64 = (x + 8)(x - 8)

 

Now,

  

 

=   

 

= 1

Solution 1(v)

   

Consider,

3x2 - x - 2 = 3x2 - 3x + 2x - 2

= 3x(x - 1) + 2(x - 1)

= (x - 1)(3x + 2)

 

Consider,

x2 - 7x + 12

= x2 - 4x - 3x + 12

= x(x - 4) - 3(x - 4)

= (x - 4)(x - 3)

 

Consider,

3x2 - 7x - 6

= 3x2 - 9x + 2x - 6

= 3x(x - 3) + 2(x - 3)

= (x - 3)(3x + 2)

 

  

=   

 

=   

 

=   

Solution 1(vi)

  

Consider,

4x2 - 11x + 6

= 4x2 - 8x - 3x + 6

= 4x(x - 2) - 3(x - 2)

= (x - 2)(4x - 3)

 

Consider,

16x2 - 9

= (4x + 3)(4x - 3)

 

Now,

  

 

=   

 

=   

Solution 1(vii)

   

Consider,

a3 - 27 = (a - 3)(a2 + 3a + 9) 

Consider,

5a2 - 16a + 3

= 5a2 - 15a - a + 3

= 5a(a - 3) - (a - 3)

= (a - 3)(5a - 1)

 

Consider,

25a2 - 1

= (5a + 1)(5a - 1)

 

Now,

 

  

 

=   

 

=   

 

= 5a + 1

Solution 1(viii)

   

Consider,

1 - 2x + x2

= 1 - x - x + x2

= (1 - x) - x (1 - x)

= (1 - x)(1 - x) 

Consider,

1 - x3 = (1 - x)(1 + x + x2)

Now,

  

 

=   

 

=