CBSE Class 9 Maths Circles
- If two intersecting chords PQ and RS of a circle make equal angles with the diameter passing through their point of intersection, then prove that the chords are equal.
- Prove that the angle in the minor segment is an obtuse angle.
- In the given figure, equal chords AB and CD of a circle C(O, r) cut at right angles at E. If M and N are the mid points of AB and CD respectively, prove that OMEN is a square.
- In the figure A, B and C are three points on a circle such that the angle subtended by the chords AB and AC at the centre are 120^{o} and 80^{o} respectively. Determine angle BAC.
- P is the centre of the circle. Prove that XPZ is equal to twice the sum of XZY and YXZ.
- O is the centre of the circle, find the value of x.
- AB and AC are two equal chords of a circle whose centre is O. If OD is perpendicular to AB and OE is perpendicular to AC, prove that ADE is an isosceles triangle.
- O is the centre of the circle and PQ is a diameter. If ROS is equal to 40^{o} find RTQ.
- PQ and RQ are the two chords of a circle equidistant from the centre O. Prove that the diameter passing through Q bisects PQR and PSR.
- In the figure, O is the centre of a circle. Prove that x + y = z.