If a+b+c =8 , a²+b+c²=26,
Then Find, ab+bc+ca
Asked by justjasonpong
| 28th Dec, 2018,
06:17: PM
Expert Answer:
a + b + c = 8 , a² + b2 + c² = 26
Using
(a + b + c)2 = a² + b2 + c² + 2(ab + bc + ca)
82 = 26 + 2(ab + bc + ca)
64 - 26 = 2(ab + bc + ca)
2(ab + bc + ca) = 38
ab + bc + ca = 19
Answered by Sneha shidid
| 31st Dec, 2018,
09:40: AM
Concept Videos
- 8xy^3 + 12x^2y^2
- 11ab^2c + 22ab - 11abc
- (5p+7q)² - (7p+5q)²
- (a-8)^2 +2 (a -8)-15
- m2 +12m+36
- 7+10 (x+y)-8(x+y)^2
- Factorise using formula when the given expression is a perfect square : 9x^2+24x+16
- Factorise using formula when a binomial is the difference of two squares : 3x^5-48x
- Factorise using formula when a binomial is the difference of two squares : 16y^3-4y
- (a+b)^2=
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change