Question
Sat October 27, 2012 By: Amithjose

# In the figure ABCD is a square. A line segment DX cuts the side BC at X and the diagonal AC at O such that COD = 105o and OXC = y. Then y is equal to

Sat October 27, 2012

Answer : Given :In the figure ABCD is a square. A line segment DX cuts the side BC at X and the diagonal AC at O such that COD = 105 degree and OXC = y
To find :y

Since DX is a line segment, then
angle COD + angle COX = 180 degrees {Angle sum property}
=> angle COX = 180 -105 = 75 degrees........(1)

Since ABCD is a square and AC is a diagonal , therefore all the angles in a square is 90 degree each and AC bisects the angle in half. {property}
=> angle ACB {  also OCX } = 90 /2 =45 degrees...............(2)

In traingle COX
=> angle OCX + angle COX  + y = 180 degree { sum of angles in a triangle is 180 degree}
=> y = 180 - (45+75) {using eq 1 and 2}
=> y = 60 degrees Answer
Related Questions
Sat May 27, 2017

# ABCD isa square. E,F,G,H are the midpoints of AB,BC,CD,DA respectively. Such that AE=CG=DH. Prove that EFGH is a square?

Sun January 08, 2017

Home Work Help