1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days
8104911739

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

022-62211530

Mon to Sat - 11 AM to 8 PM

# NCERT Solution for Class 9 Mathematics Chapter 7 - Triangles

NCERT Textbook Solutions are considered extremely helpful when preparing for your CBSE Class 9 Mathematics exams. TopperLearning study resources infuse profound knowledge, and our Textbook Solutions compiled by our subject experts are no different. Here you will find all the answers to the NCERT textbook questions of Chapter 7 - Triangles.

All our solutions for Chapter 7 - Triangles are prepared considering the latest CBSE syllabus, and they are amended from time to time. Our free NCERT Textbook Solutions for CBSE Class 9 Mathematics will strengthen your fundamentals in this chapter and can help you to score more marks in the examination. Refer to our Textbook Solutions any time, while doing your homework or while preparing for the exam.

Exercise/Page

## NCERT Solution for Class 9 Mathematics Chapter 7 - Triangles Page/Excercise 7.1

Solution 1

In ABC and ABD
CAB = DAB                                 (given)
AB = AB                                             (common)     So, BC and BD are of equal length.

Solution 2

In ABD and BAC
DAB = CBA                              (given)
AB = BA                                         (common)
And ABD = BAC                          (by CPCT)

Solution 3

In BOC and AOD
BOC = AOD                                 (vertically opposite angles)
CBO = DAO                                 (each 90o)

Solution 4

Solution 5

Solution 6

BAD + DAC = EAC + DAC
BAC = DAE
Now in BAC and DAE
BAC = DAE                                 (proved above)
AC = AE                                             (given)

Solution 7

Given that EPA = DPB EPA + DPE = DPB + DPE
DPA = EPB
Now in  DAP and  EBP
DAP = EBP                               (given)
AP = BP                                          (P is mid point of AB)
DPA = EPB                              (from above)

Solution 8

(i)  In AMC and BMD
AM = BM                                              (M is mid point of AB)
AMC = BMD                                  (vertically opposite angles)
CM = DM                                             (given)     (ii) We have ACM = BDM
But ACM and BDM are alternate interior angles
Since alternate angles are equal.
Hence, we can say that DB || AC
DBC + ACB = 180o                   (co-interior angles) DBC + 90o = 180o
DBC + 90o = 1800  DBC          =  90o (iii) Now in DBC and ACB
DBC = ACB                                 (each 90o )
BC = CB                                             (Common) (iv) We have DBC  ACB

## NCERT Solution for Class 9 Mathematics Chapter 7 - Triangles Page/Excercise 7.2

Solution 1

(i)    It is given that in triangle ABC, AC = AB
ACB = ABC     (angles opposite to equal sides of a triangle are equal) OBC = OBC OB = OC                  (sides opposite to equal angles of a triangle are also equal)   (ii) Now in OAB and OAC
AO =AO                               (common)
AB = AC                                (given)
OB = OC                               (proved above)
So, OAB  OAC         (by SSS congruence rule)     BAO = CAO             (C.P.C.T.)

Solution 2

CD = BD                                        (AD is the perpendicular bisector of BC)

Solution 3

In AEB and AFC
AEB = AFC                                             (each 90o)
A = A                                                     (common angle)
AB = AC                                                        (given)

Solution 4

(i) In AEB and AFC
AEB = AFC                          (each 90)
A = A                                      (common angle)
BE = CF                                        (given)        (ii) We have already proved
AEB  AFC
AB = AC                                      (by CPCT)

Solution 5

In ABD and ACD
AB = AC                                    (Given)
BD = CD                                    (Given)

Solution 6

In ABC
AB = AC                                                (given)
ACB = ABC                               (angles opposite to equal sides of a triangle are also equal)
Now In ACD
ADC = ACD                              (angles opposite to equal sides of a triangle are also equal)
Now, in BCD
ABC + BCD + ADC = 180o          (angle sum property of a triangle)
ACB + ACB +ACD + ACD = 180o
2(ACB + ACD) = 180o
2(BCD) = 180o
BCD = 90o

Solution 7

Given that AB = AC C = B                      (angles opposite to equal sides are also equal) In ABC, A + B + C = 180o     (angle sum property of a triangle) 90o + B + C = 180o 90o + B + B = 180o
2 B = 90o
B = 45

Solution 8

Let us consider that ABC is an equilateral triangle.
So, AB = BC = AC
Now, AB = AC C = B         (angles opposite to equal sides of a triangle are equal)

We also have
AC = BC
B = A             (angles opposite to equal sides of a triangle are equal)

So, we have
A = B = C
Now, in ABC
A + B + C = 180o
A + A + A = 180o
3A = 180o
A = 60o
A = B = C = 60o
Hence, in an equilateral triangle all interior angles are of 60o.

## NCERT Solution for Class 9 Mathematics Chapter 7 - Triangles Page/Excercise 7.3

Solution 1

(i)  In ABD and ACD
AB = AC                                             (given)
BD = CD                                            (given)
AB = AC                                            (given).
BAP = CAP                                  [from equation (1)]
AP = AP                                             (common)          (iii)   From equation (1)
BAP = CAP
Hence, AP bisect A
Now in BDP and CDP
BD = CD                                            (given)
DP = DP                                            (common)
BP = CP                                            [from equation (2)]         (iv)   We have BDP  CDP

Now, BPD + CPD = 180o             (linear pair angles)

BPD + BPD = 180o

2BPD = 180o                                    [from equation (4)]

BPD = 90o                                                                    ...(5)

From equations (2) and (5), we can say that AP is perpendicular  bisector of BC.

Solution 2

AB = AC                                                  (given)

(ii)              Also by CPCT,

Solution 3

(i)  In ABC, AM is median to BC      BM = BC      In PQR, PN is median to QR      QN = QR      But BC = QR              BN = QN                                                     ...(i)       Now, in ABM and PQN
AB = PQ                                                       (given)
BM = QN                                                       [from equation (1)]
AM = PN                                                        (given)      (ii)  Now in ABC and PQR
AB = PQ                                                        (given)
ABC = PQR                                             [from equation (2)]
BC = QR                                                        (given)
ABC  PQR                                  (by SAS congruence rule)

Solution 4

In BEC and CFB
BEC = CFB                                              (each 90o )
BC = CB                                                         (common)
BE = CF                                                         (given)                                                  (Sides opposite to equal angles of a triangle are equal)   Hence, ABC is isosceles.

Solution 5

In APB and APC
APB = APC                                             (each 90o)
AB =AC                                                          (given)
AP = AP                                                         (common) B = C                                                (by using CPCT)

## NCERT Solution for Class 9 Mathematics Chapter 7 - Triangles Page/Excercise 7.4

Solution 1

Let us consider a right angled triangle ABC, right angle at B.
In ABC
A + B + C = 180o            (angle sum property of a triangle)
A + 90o + C = 180o
A + C = 90o
Hence, the other two angles have to be acute (i.e. less than 90). [In any triangle, the side opposite to the larger (greater) angle is longer]
So, AC is the largest side in ABC.
But AC is the hypotenuse of ABC. Therefore, hypotenuse is the longest side in a right angled triangle.

Solution 2

In the given figure, ABC + PBC = 180p            (linear pair)
ABC = 180o - PBC             ... (1)
Also,
ACB + QCB = 180o
ACB = 180o - QCB                    ... (2)
As PBC < QCB
180 - PBC > 180o - QCB.
ABC > ACB                [From equations (1) and (2)]
AC > AB                           (side opposite to larger angle is larger)

Solution 3

In AOB
B < A
AO < BO     (side opposite to smaller angle is smaller)        ... (1)
Now in COD
C < D
OD < OC     (side opposite to smaller angle is smaller)        ... (2)
On adding equations (1) and (2), we have
AO + OD < BO + OC

Solution 4

Let us join AC.
In ABC
AB < BC           (AB is smallest side of quadrilateral ABCD) (1) In ADC
AD < CD          (CD is the largest side of quadrilateral ABCD) (2) On adding equations (1) and (2), we have
2 + 4 < 1 + 3
C < A
A > C
Let us join BD.   In ABD
AB < AD            (AB is smallest side of quadrilateral ABCD) (3) In BDC
BC < CD         (CD is the largest side of quadrilateral ABCD) On adding equations (3) and (4), we have
8 + 7 < 5 + 6
D < B
B > D

Solution 5

As PR > PQ   PS is the bisector of QPR

Solution 6

Let us take a line l and from point P (i.e. not on line l) we have drawn two line segments PN and PM. Let PN be perpendicular to line l and PM is drawn at some other angle.
In PNM
N = 90o
Now, P + N + M = 180o    (Angle sum property of a triangle)
P + M = 90o
Clearly, M is an acute angle

## NCERT Solution for Class 9 Mathematics Chapter 7 - Triangles Page/Excercise 7.5

Solution 1

Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors, of all the sides of triangles meet together. As here in ABC we can find the circumcentre by drawing the perpendicular bisectors of sides AB, BC, and CA of this triangle. O is the point where these bisectors are meeting together. So O is point which is equidistant from all the vertices of ABC.

Solution 2

The point which is equidistant from all the sides of a triangle is incenter of triangle. Incentre of triangle is the intersection point of angle bisectors of interior angles of that triangle. Here in ABC we can find the incentre of this triangle by drawing the angle bisectors of interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. So, I is the point, equidistant from all the sides of ABC.

Solution 3

Ice-cream parlour should be set up at the circumcentre O of ABC.     In this situation maximum number of persons can approach to it. We can find circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.

Solution 4

We may observe that hexagonal shaped rangoly is having 6 equilateral triangles in it. Area of OAB = (side)2 = (5)2

## Browse Study Material

TopperLearning provides step-by-step solutions for each question in each chapter in the NCERT textbook. Access Chapter 7 - Triangles here for free.

Our NCERT Solutions for Class 9 Mathematics are by our subject matter experts. These NCERT Textbook Solutions will help you to revise the whole chapter, and you can increase your knowledge of Mathematics. If you would like to know more, please get in touch with our counsellor today!

# Text Book Solutions

CBSE IX - Mathematics

## This content is available for subscribed users only.

OR

Call us

1800-212-7858 (Toll Free) to speak to our academic expert.
OR

Let us get in touch with you