SELINA Solutions for Class 9 Maths Chapter 23 - Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Revise lessons with Selina Solutions for ICSE Class 9 Mathematics Chapter 23 Trigonometrical Ratios of Standard Angles including evaluation of an expression involving Trigonometric Ratios. TopperLearning give you access to chapter-specific revision notes such as textbook solutions to prepare for your exam. Now, practise these solutions to grasp the steps to find the value of trigonometric ratios in a given problem.
Selina Maths textbook solutions is a preferred study material for ICSE Class 9 students. To make online learning seamless for you, TopperLearning provides these solutions and other e-learning materials like videos, mock tests and more – all in a single place.
Chapter 23 - Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] Exercise Ex. 23(A)
find the value of:
(i) sin 30o cos 30o
(ii) tan 30o tan 60o
(iii) cos2 60o + sin2 30o
(iv) cosec2 60o - tan2 30o
(v) sin2 30o + cos2 30o + cot2 45o
(vi) cos2 60o + sec2 30o + tan2 45o.
(i)
(ii)
(iii)
(iv)
(v)
(vi)
find the value of :
(i) tan2 30o + tan2 45o + tan2 60o
(ii)
(iii) 3 sin2 30o + 2 tan2 60o - 5 cos2 45o.
(i)
(ii)
(iii) 3 sin2 30o + 2 tan2 60o - 5 cos2 45o
Prove that:
(i) sin 60o cos 30o + cos 60o. sin 30o = 1
(ii) cos 30o. cos 60o - sin 30o. sin 60o = 0
(iii) cosec2 45o - cot2 45o = 1
(iv) cos2 30o - sin2 30o = cos 60o.
(v)
(vi) 3 cosec2 60o - 2 cot2 30o + sec2 45o = 0.
(i) LHS=sin 60o cos 30o + cos 60o. sin 30o
=
(ii) LHS=cos 30o. cos 60o - sin 30o. sin 60o
==RHS
(iii) LHS= cosec2 45o - cot2 45o
==RHS
(iv) LHS= cos2 30o - sin2 30o
==RHS
(v) LHS=
==RHS
(vi) LHS=
==RHS
prove that:
(i) sin (2 30o) =
(ii) cos (2 30o) =
(iii) tan (2 30o) =
(i)
(ii)
(iii)
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios:
(i) sin 45o
(ii) cos 45o
(iii) tan 45o
Given that AB = BC = x
(i)
(ii)
(iii)
Prove that:
(i) sin 60o = 2 sin 30o cos 30o.
(ii) 4 (sin4 30o + cos4 60o)
-3 (cos2 45o - sin2 90o) = 2
(i) If sin x = cos x and x is acute, state the value of x.
(ii) If sec A = cosec A and 0o A
90o, state the value of A.
(iii) If tan = cot
and 0o
90o, state the value of
.
(iv) If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
(i)
The angle, x is acute and hence we have, 0 < x
(ii)
(iii)
(iv)
(i) If sin x = cos y, then x + y = 45o ; write true of false.
(ii) sec. Cot
= cosec
; write true or false.
(iii) For any angle , state the value of :
Sin2 + cos2
.
(i)
if x and y are acute angles,
is false.
(ii)
Sec. Cot
= cosec
is true
(iii)
State
for any acute angle whether:
(i) sin increases or
decreases as
increases:
(ii)
cos increases or
decreases as
increases.
(iii) tan increases or
decreases as
decreases.
(i)
For acute angles, remember what sine means: opposite over hypotenuse. If we increase the angle, then the opposite side gets larger. That means "opposite/hypotenuse" gets larger or increases.
(ii)
For acute angles, remember what cosine means: base over hypotenuse. If we increase the angle, then the hypotenuse side gets larger. That means "base/hypotenuse" gets smaller or decreases.
(iii)
For acute angles, remember what tangent means: opposite over base. If we decrease the angle, then the opposite side gets smaller. That means "opposite /base" gets decreases.
If
= 1.732, find
(correct to two decimal place) the value of each of the following:
(i) sin 60o (ii)
(i)
(ii)
Evaluate:
(i) , when A = 15o.
(ii) ; when B = 20o.
(i) Given that A=
(ii)
Given that B=
Chapter 23 - Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] Exercise Ex. 23(B)
Given A = 60o and B = 30o, prove that:
(i) sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos A cos B - sin A sin B
(iii) cos (A - B) = cos A cos B + sin A sin B
(iv) tan (A - B) =
Given A = 60o and B = 30o
(i)
(ii)
(iii)
(iv)
If A =30o, then prove that:
(i) sin 2A = 2sin A cos A =
(ii) cos 2A = cos2A - sin2A
=
(iii) 2 cos2 A - 1 = 1 - 2 sin2A
(iv) sin 3A = 3 sin A - 4 sin3A.
Given A=
(i)
(ii)
(iii)
(iv)
If A = B = 45o, show that:
(i) sin (A - B) = sin A cos B - cos A sin B
(ii) cos (A + B) = cos A cos B - sin A sin B
Given that A = B = 45o
(i)
(ii)
If A = 30o; show that:
(i) sin 3 A
= 4 sin A sin (60o - A) sin (60o + A)
(ii) (sin A - cos A)2 = 1 - sin 2A
(iii) cos 2A = cos4 A - sin4 A
(iv)
(v) = 2 cos A.
(vi) 4 cos A cos (60o - A). cos (60o + A)
= cos 3A
(vii)
Given that A = 30o
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
Chapter 23 - Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] Exercise Ex. 23(C)
Solve the following equations for A, if :
(i) 2 sin A = 1 (ii) 2 cos 2 A = 1
(iii)
sin 3 A = (iv) sec 2 A = 2
(v)
tan A =
1 (vi) tan 3 A =
1
(vii)
2 sin 3 A = 1
(viii) cot 2 A = 1
(i)
(ii)
(iii)
(iv)
(V)
(vi)
(vii)
(viii)
Calculate the value of A, if :
(i) (sin A - 1) (2 cos A - 1) = 0
(ii) (tan A - 1) (cosec 3A - 1) = 0
(iii) (sec 2A - 1) (cosec 3A - 1) = 0
(iv) cos 3A. (2 sin 2A - 1) = 0
(v) (cosec 2A - 2) (cot 3A - 1) = 0
(i)
(ii)
(iii)
(iv)
(v)
If 2 sin xo - 1 = 0 and xo is an acute angle; find :
(i) sin xo (ii) xo (iii) cos xo and tan xo.
(i)
(ii)
(iii)
If 4 cos2 xo - 1 = 0 and 0 xo
90o, find:
(i) xo (ii) sin2 xo + cos2 xo
(iii)
(i)
(ii)
(iii)
If
4 sin2 - 1= 0 and
angle
is less than
90o, find the value of
and hence the
value of cos2
+ tan2
.
If
sin 3A = 1 and 0 A
90o,
find:
(i) sin A (ii) cos 2A
(iii)
tan2A -
(i)
(ii)
(iii)
If 2 cos 2A = and A is acute, find:
(i) A (ii) sin 3A
(iii) sin2 (75o - A) + cos2 (45o +A)
(i)
(ii)
(iii)
(i) If sin x + cos y = 1 and x = 30o, find the value of y.
(ii) If 3 tan A - 5 cos B= and B = 90o, find the value of A.
(i)
Given that x = 30o
(ii)
Given that B = 90o
From the given figure, find:
(i) cos xo(ii) xo
(iii)
(iv) Use tan xo, to find the value of y.
(i)
(ii)
(iii)
(iv)
Use the given figure to find:
(i) tan o (ii)
o (iii) sin2
o - cos2
o
(iv) Use sin o to find the value of x.
(i)
(ii)
(iii)
(iv)
Find the magnitude of angle A, if:
(i) 2 sin A cos A - cos A - 2 sin A + 1 = 0
(ii) tan A - 2 cos A tan A + 2 cos A - 1 = 0
(iii) 2 cos2 A - 3 cos A + 1 = 0
(iv) 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
(i)
(ii)
(iii)
(iv)
Solve for x:
(i) 2 cos 3x - 1 = 0 (ii) cos = 0
(iii) sin (x + 10o) = (iv) cos (2x - 30o) = 0
(v) 2 cos (3x - 15o) = 1 (vi) tan2 (x - 5o) = 3
(vii) 3 tan2 (2x - 20o) = 1
(viii) cos
(ix) sin2 x + sin2 30o = 1
(x) cos2 30o + cos2 x = 1
(xi) cos2 30o + sin2 2x = 1
(xii) sin2 60o + cos2 (3x- 9o) = 1
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
If 4 cos2 x = 3 and x is an acute angle; find the value of :
(i) x (ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
(i)
(ii)
(iii)
(iv)
In
ABC,
B = 90o, AB = y units, BC =
units, AC = 2
units and angle A = xo, find:
(i) sin xo (ii) xo (iii) tan xo
(iv) use cos xo to find the value of y.
(i)
From
(ii)
(iii)
(iv)
If 2 cos (A + B) = 2 sin (A - B) = 1; find the values of A and B.
Adding (1) and (2)
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change