Request a call back

Join NOW to get access to exclusive study material for best results

Class 8 SELINA Solutions Maths Chapter 12: Identities

Identities Exercise Ex. 12(A)

Solution 1(i)

Correct option: (c) 2x2 + 8y2

Solution 1(ii)

Correct option: (c) 0

Solution 1(iii)

Correct option: (c) –48xy

Solution 1(iv)

Correct option: (c) 0.36

(0.8)2 – 0.32 + (0.2)2

= (0.8)2 – 2 × 0.8 × 0.2 + (0.2)2

= (0.8 – 0.2)2

= (0.6)2

= 0.36

Solution 1(v)

Correct option: (b) a2 + b2 – c2 – 2ab

(a – b – c)(a – b + c)

= (a – b)2 – (c)2

= a2 + b2 – 2ab – c2

Solution 2(i)

(a – 8)(a + 2) = a2 + (–8 + 2)a + (–8)(2)

                            = a2 – 6a – 16

Solution 2(ii)

(b – 3)(b – 5) = b2 – (3 + 5)b + (3)(5)

                           = b2 – 8b + 15

Solution 2(iii)

(3x – 2y)(2x + y) = (3x)(2x) + [3x × y + (–2y) × 2x] + (–2y)(y)

                                   = 6x2 + (3xy – 4xy) – 2y2

                                   = 6x2 – xy – 2y2

Solution 2(iv)

(5a + 16)(3a – 7) = (5a)(3a) + [5a × (–7) + 16 × 3a] + (16)(–7)

                                   = 15a2 + (–35a + 48a) – 112

                                   = 15a2 + 13a – 112

Solution 2(v)

(8 – b)(3 + b) = (8)(3) + [8 × b + (–b) × 3] + (–b)(b)

                               = 24 + (8b – 3b) – b2

                               = 24 + 5b – b2

Solution 3(i)

(2a + 3)(2a – 3) = (2a)2 – (3)2 = 4a2 – 9

Solution 3(ii)

(xy + 4)(xy – 4) = (xy)2 – (4)2 = x2y2 – 16

Solution 3(iii)

(ab + x2)(ab – x2) = (ab)2 – (x2)2 = a2b2 – x4

Solution 3(iv)

(3x2 + 5y2)(3x2 – 5y2) = (3x2)2 – (5y2)2 = 9x4 – 25y4

Solution 3(v)

Solution 3(vi)

Solution 3(vii)

(0.5 – 2a)(0.5 + 2a) = (0.5)2 – (2a)2 = 0.25 – 4a2

Solution 3(viii)

Solution 4(i)

(a + b)(a – b)(a2 + b2) = (a2 – b2)(a2 + b2)

                                             = (a2)2 – (b2)2

                                             = a4 – b4

Solution 4(ii)

(3 – 2x)(3 + 2x)(9 + 4x2) = [(3)2 – (2x)2](9 + 4x2)

                                                   = (9 – 4x2)(9 + 4x2)

                                                   = (9)2 – (4x2)2

                                                   = 81 – 16x4

Solution 4(iii)

(3x – 4y)(3x + 4y)(9x2 + 16y2) = [(3x)2 – (4y)2](9x2 + 16y2)

                                                              = (9x2 – 16y2)(9x2 + 16y2)

                                                              = (9x2)2 – (16y2)2

                                                              = 81x4 – 256y4

Solution 5(i)

21 × 19 = (20 + 1)(20 – 1)

= (20)2 – (1)2

= 400 – 1

= 399

Solution 5(ii)

33 × 27 = (30 + 3)(30 – 3)

= (30)2 – (3)2

= 900 – 9

= 891

Solution 5(iii)

103 × 97 = (100 + 3)(100 – 3)

= (100)2 – (3)2

= 10000 – 9

= 9991

Solution 5(iv)

9.8 × 10.2 = (10 – 0.2)(10 + 0.2)

= (10)2 – (0.2)2

= 100 – 0.04

= 99.96

Solution 5(v)

7.7 × 8.3 = (8 – 0.3)(8 + 0.3)

= (8)2 – (0.3)2

= 64 – 0.09

= 63.91

Solution 6(i)

(6 – xy)(6 + xy) = (6)2 – (xy)2 = 36 – x2y2

Solution 6(ii)

Solution 6(iii)

Solution 6(iv)

Solution 6(v)

(2a + 3)(2a – 3)(4a2 + 9) = [(2a)2 – (3)2](4a2 + 9)

                                                   = (4a2 – 9)(4a2 + 9)

                                                   = (4a2)2 – (9)2

                                                   = 16a4 – 81

Solution 6(vi)

(a + bc)(a – bc)(a2 + b2c2) = [(a)2 – (bc)2](a2 + b2c2)

                                                     = (a2 – b2c2)(a2 + b2c2)

                                                     = (a2)2 – (b2c2)2

                                                     = a4 – b4c4

Solution 7(i)

Solution 7(ii)

Solution 7(iii)

(a + b – c)2

= a2 + b2 + c2 + 2ab – 2bc – 2ca

= a2 + b2 + c2 + 2(ab – bc – ca)

Solution 7(iv)

(a – b + c)2

= a2 + b2 + c2 – 2ab – 2bc + 2ca

= a2 + b2 + c2 + 2(ca – ab – bc)

Solution 7(v)

Solution 8(i)

Solution 8(ii)

Solution 8(iii)

(x – 2y + 1)2

= (x)2 + (–2y)2 + (1)2 + 2(x)(–2y) + 2(–2y)(1) + 2(x)(1)

= x2 + 4y2 + 1 – 4xy – 4y + 2x

Solution 8(iv)

(3a – 2b – 5c)2

= (3a)2 + (–2b)2 + (–5c)2 + 2(3a)(–2b) + 2(–2b)(–5c) + 2(3a)(–5c)

= 9a2 + 4b2 + 25c2 – 12ab + 20bc – 30ac

Solution 8(v)

Solution 8(vi)

Solution 8(vii)

(2x – 3y + z)2

= (2x)2 + (–3y)2 + (z)2 + 2(2x)(–3y) + 2(–3y)(z) + 2(2x)(z)

= 4x2 + 9y2 + z2 – 12xy – 6yz + 4xz

Solution 8(viii)

Solution 9(i)

(208)2

= (200 + 8)2

= (200)2 + 2(200)(8) + (8)2

= 40000 + 3200 + 64

= 43264

Solution 9(ii)

(92)2 = (90 + 2)2

= (90)2 + 2(90)(2) + (2)2

= 8100 + 360 + 4

= 8464

Solution 9(iii)

(9.4)2 = (10 – 0.6)2

= (10)2 – 2(10)(0.6) + (0.6)2

= 100 – 12 + 0.36

= 88.36

Solution 9(iv)

(20.7)2 = (20 + 0.7)2

= (20)2 + 2(20)(0.7) + (0.7)2

= 400 + 28 + 0.49

= 428.49

Solution 10(i)

(2a + b)3

= (2a)3 + 3(2a)2(b) + 3(2a)(b)2 + (b)3

= (2a)3 + 3(4a2)(b) + 3(2a)(b2) + (b)3

= 8a3 + 12a2b + 6ab2 + b3

Solution 10(ii)

(a – 2b)3

= (a)3 – 3(a)2(2b) + 3(a)(2b)2 – (2b)3

= a3 – 3(a2)(2b) + 3(a)(4b2) – 8b3

= a3 – 6a2b + 12ab2 – 8b3

Solution 10(iii)

(3x – 2y)3

= (3x)3 – 3(3x)2(2y) + 3(3x)(2y)2 – (2y)3

= 27x3 – 3(9x2)(2y) + 3(3x)(4y2) – 8y3

= 27x3 – 54x2y + 36xy2 – 8y3

Solution 10(iv)

(x + 5y)3

= (x)3 + 3(x)2(5y) + 3(x)(5y)2 + (5y)3

= (x)3 + 3(x2)(5y) + 3(x)(25y2) + (125y3)

= x3 + 15x2y + 75xy2 + 125y3

Solution 10(v)

Solution 10(vi)

Solution 11(i)

(a + 2)3

= a3 + 3(a)2(2) + 3(a)(2)2 + (2)3

= a3 + 6a2 + 12a + 8

Solution 11(ii)

(2a – 1)3

= (2a)3 – 3(2a)2(1) + 3(2a)(1)3 – (1)3

= 8a3 – 12a2 + 6a – 1

Solution 11(iii)

(2a + 3b)3

= (2a)3 + 3(2a)2(3b) + 3(2a)(3b)2 + (3b)3

= 8a3 + 3(4a2)(3b) + 3(2a)(9b2) + 27b3

= 8a3 + 36a2b + 54ab2 + 27b3

Solution 11(iv)

(3b – 2a)3

= (3b)3 – 3(3b)2(2a) + 3(3b)(2a)2 – (2a)3

= 27b3 – 3(9b2)(2a) + 3(3b)(4a2) – 8a3

= 27b3 – 54b2a +36ba2 – 8a3

Solution 11(v)

Solution 11(vi)

Identities Exercise Ex. 12(B)

Solution 1(i)

Correct option: (c) 11

Solution 1(ii)

Correct option: (a) 29

(a + b) = 7

⇒ (a + b)2 = 49

⇒ a2 + b2 + 2ab = 49

⇒ a2 + b2 + 2(10) = 49

⇒ a2 + b2 = 29

Solution 1(iii)

Correct option: (a) 100

Solution 1(iv)

Correct option: (b) 2

(a – b)2 = (a + b)2 – 4ab

⇒ (1)2 = (3)2 – 4ab

⇒ 1 = 9 – 4ab

⇒ 4ab = 8

⇒ ab = 2

Solution 1(v)

Correct option: (a) 0

Solution 2

(a + b) = 5

⇒ (a + b)2 = 25

⇒ a2 + b2 + 2ab = 25

⇒ a2 + b2 + 2(6) = 25

⇒ a2 + b2 + 12 = 25

⇒ a2 + b2 = 13

Solution 3

(a – b) = 6

⇒ (a – b)2 = 36

⇒ a2 + b2 – 2ab = 36

⇒ a2 + b2 – 2(16) = 36

⇒ a2 + b2 – 32 = 36

⇒ a2 + b2 = 68

Solution 4(i)

(a + b)2 = a2 + b2 + 2ab

= 29 + 2(10)

= 29 + 20

= 49

⇒ a + b = ±7

Solution 4(ii)

(a – b)2 = a2 + b2 – 2ab

= 29 – 2(10)

= 29 – 20

= 9

⇒ a – b = ±3

Solution 5(i)

(a – b)2 = a2 + b2 – 2ab

= 10 – 2(3)

= 10 – 6

= 4

⇒ a – b = ±2

Solution 5(ii)

(a + b)2 = a2 + b2 + 2ab

= 10 + 2(3)

= 10 + 6

= 16

⇒ a + b = ±4

Solution 6

Solution 7

Solution 8

Solution 9

Solution 10

(a + b + c) = 10

⇒ (a + b + c)2 = 100

⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 100

⇒ 38 + 2(ab + bc + ca) = 100

⇒ 2(ab + bc + ca) = 62

⇒ (ab + bc + ca) = 31

Solution 11

(a + b + c) = 9

⇒ (a + b + c)2 = 81

⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81

⇒ a2 + b2 + c2 + 2(24) = 81

⇒ a2 + b2 + c2 + 48 = 81

⇒ a2 + b2 + c2 = 33

Solution 12

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

= 83 + 2(71)

= 83 + 142

= 225

⇒ (a + b + c) = ±15

Solution 13

(a + b) = 6

⇒ (a + b)3 = 216

⇒ a3 + b3 + 3ab(a + b) = 216

⇒ a3 + b3 + 3(8)(6) = 216

⇒ a3 + b3 + 144 = 216

⇒ a3 + b3 = 72

Solution 14

(a – b) = 3

⇒ (a – b)3 = 27

⇒ a3 – b3 – 3ab(a – b) = 27

⇒ a3 – b3 – 3(10)(3) = 27

⇒ a3 – b3 – 90 = 27

⇒ a3 – b3 = 117

Solution 15

Solution 16

Solution 17(i)

Solution 17(ii)

Solution 18(i)

Solution 18(ii)

Solution 19(i)

Let the numbers be x and y.

Then, x2 + y2 = 13 and xy = 6

Now, (x + y)2 = x2 + y2 + 2xy

= 13 + 2(6)

= 13 + 12

= 25

⇒ (x + y) = ±5

Solution 19(ii)

Let the numbers be x and y.

Then, x2 + y2 = 13 and xy = 6

Now, (x – y)2 = x2 + y2 – 2xy

= 13 – 2(6)

= 13 – 12

= 1

⇒ (x – y) = ±1

Identities Exercise TEST YOURSELF

Solution 1(i)

Correct option: (a) 4

Solution 1(ii)

Correct option: (c) x8 – y8

(x + y)(x – y)(x2 + y2)(x4 + y4)

= (x2 – y2) (x2 + y2)(x4 + y4)

= (x4 – y4)(x4 + y4)

= (x8 – y8)

Solution 1(iii)

Correct option: (d) 9996

102 × 98 = (100 + 2)(100 – 2)

= (100)2 – (2)2

= 10000 – 4

= 9996

Solution 1(iv)

Correct option: (a) 10x + 5

(x + 3)(x + 3) – (x – 2)(x – 2)

= (x + 3)2 – (x – 2)2

= (x + 3 + x – 2)(x + 3 – x + 2)

= (2x + 1)(5)

= 10x + 5

Solution 1(v)

Correct option: (c) 55

5a = 302 – 252

      = (30 – 25)(30 + 25)

      = 5 × 55

      = 275

a = 55

Solution 2(i)

Solution 2(ii)

(2a + 0.5)(7a – 0.3)

= (2a)(7a) + [2a × (–0.3) + (0.5) × 7a] + (0.5)(–0.3)

= 14a2 + (–0.6a + 3.5a) – 0.15

= 14a2 + 2.9a – 0.15

Solution 2(iii)

(9 – y)(7 + y)

= (9)(7) + [9 × y + (–y) × 7] + (–y)(y)

= 63 + (9y – 7y) – y2

= 63 + 2y – y2

Solution 2(iv)

(2 – z)(15 – z)

= (2)(15) + [2 × (–z) + (–z) × 15] + (–z)( –z)

= 30 + [–2z – 15z] + z2

= 30 – 17z + z2

Solution 2(v)

(a2 + 5)(a2 – 3)

= (a2)(a2) + [a2 × (–3) + (5) × a2] + (5)(–3)

= a4 + (–3a2 + 5a2) – 15

= a4 + 2a2 – 15

Solution 2(vi)

(4 – ab)(8 + ab)

= (4)(8) + [4 × ab + (–ab) × 8] + (–ab)(ab)

= 32 + (4ab – 8ab) – a2b2

= 32 – 4ab – a2b2

Solution 2(vii)

(5xy – 7)(7xy + 9)

= (5xy)(7xy) + [5xy × 9 + (–7) × 7xy] + (–7)(9)

= 35x2y2 + (45xy – 49xy) – 63

= 35x2y2 – 4xy – 63

Solution 2(viii)

(3a2 – 4b2)(8a2 – 3b2)

= (3a2)(8a2) + [3a2 × (–3b2) + (–4b2) × 8a2] + (–4b2)( –3b2)

= 24a4 + (–9a2b2 – 32a2b2) + 12b4

= 24a4 – 41a2b2 + 12b4

Solution 3(i)

Solution 3(ii)

Solution 3(iii)

Solution 3(iv)

Solution 3(v)

Solution 3(vi)

(607)2 = (600 + 7)2

= (600)2 + 2(600)(7) + (7)2

= 360000 + 8400 + 49

= 368449

Solution 3(vii)

(391)2 = (400 – 9)2

= (400)2 – 2(400)(9) + (9)2

= 160000 – 7200 + 81

= 152881

Solution 3(viii)

(9.7)2 = (10 – 0.3)2

= (10)2 – 2(10)(0.3) + (0.3)2

= 100 – 6 + 0.09

= 94.09

Solution 4(i)

Solution 4(ii)

Solution 5(i)

Solution 5(ii)

Solution 5(iii)

Solution 6(i)

(a – b)2 = a2 + b2 – 2ab

= 41 – 2(4)

= 41 – 8

= 33

Solution 6(ii)

(a + b)2 = a2 + b2 + 2ab

= 41 + 2(4)

= 41 + 8

= 49

Solution 7(i)

Solution 7(ii)

Solution 8(i)

Solution 8(ii)

Solution 9(i)

(3x – 4y + 5z)2

= (3x)2 + (–4y)2 + (5z)2 + 2(3x)(–4y) + 2(–4y)(5z) + 2(3x)(5z)

= 9x2 + 16y2 + 25z2 – 24xy – 40yz + 30zx

Solution 9(ii)

(2a – 5b – 4c)2

= (2a)2 + (–5b)2 + (–4c)2 + 2(2a)(–5b) + 2(–5b)(–4c) + 2(2a)(–4c)

= 4a2 + 25b2 + 16c2 – 20ab + 40bc – 16ca

Solution 9(iii)

(5x + 3y)3

= (5x)3 + (3y)3 + 3(5x)(3y)(5x + 3y)

= 125x3 + 27y3 + 45xy(5x + 3y)

= 125x3 + 27y3 + 225x2y + 135xy2

Solution 9(iv)

(6a – 7b)3

= (6a)3 + (–7b)3 + 3(6a)(–7b)(6a – 7b)

= 216a3 – 343b3 – 126ab(6a – 7b)

= 216a3 – 343b3 – 756a2b + 882ab2

Solution 10

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

(9)2 = a2 + b2 + c2 + 2(15)

81 = a2 + b2 + c2 + 30

a2 + b2 + c2 = 81 – 30 = 51

Solution 11

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

(11)2 = 81 + 2(ab + bc + ca)

121 = 81 + 2(ab + bc + ca)

2(ab + bc + ca) = 40

ab + bc + ca = 20

Solution 12

(3x – 4y)3 =(3x)3 – (4y)3 – 3(3x)(4y)(3x – 4y)

53 = 27x3 – 64y3 – 36xy(5)

125 = 27x3 – 64y3 – 36(3)(5)

125 = 27x3 – 64y3 – 540

27x3 – 64y3 = 665

Solution 13

(a + b)3 = a3 + b3 + 3(ab)(a + b)

83 = a3 + b3 + 3(15)(8)

512 = a3 + b3 + 360

a3 + b3 = 152

Solution 14

(3x + 2y)3 = (3x)3 + (2y)3 + 3(3x)(2y)(3x + 2y)

93 = 27x3 + 8y3 + 18xy(9)

729 = 27x3 + 8y3 + 18(3)(9)

729 = 27x3 + 8y3 + 486

27x3 + 8y3 = 243

Solution 15

(5x – 4y)3 = (5x)3 – (4y)3 – 3(5x)(4y)(5x – 4y)

73 = 125x3 – 64y3 – 60xy(7)

343 = 125x3 – 64y3 – 420(8)

343 = 125x3 – 64y3 – 3360

125x3 – 64y3 = 3703

Solution 16

Let the numbers be x and y.

Then, x – y = 5 and xy = 14

(x – y)3 = (x)3 – (y)3 – 3xy(x – y)

53 = x3 – y3 – 3(14)(5)

125 = x3 – y3 – 210

x3 – y3 = 335