Request a call back

Join NOW to get access to exclusive study material for best results

Class 8 SELINA Solutions Maths Chapter 13: Factorisation

Factorisation Exercise EX. 13(A)

Solution 1(i)

Correct option: (d) –7(x2 + 2y)

–7x2 – 14y = –7(x2 + 2y)

Solution 1(ii)

Correct option: (c) (x – y)(a – bx + by)

a(x – y) – b(x – y)2 = (x – y)[a – b(x – y)]

= (x – y)(a – bx + by)

Solution 1(iii)

Correct option: (a) (a + b)(a + c)

a2 + bc + ab + ac = a2 + ac + bc + ab

= a(a + c) + b(c + a)

= (a + b)(a + c)

Solution 1(iv)

Correct option: (c) (1 – 2x)(1 – 2x2)

1 – 2x – 2x2 + 4x3 = (1 – 2x) – (2x2 – 4x3)

= (1 – 2x) – 2x2(1 – 2x)

= (1 – 2x)(1 – 2x2)

Solution 1(v)

Correct option: (b) (x – y)(a – bx + by)

a(x – y) – b(y – x)2 = a(x – y) – b(x – y)2

= (x – y)[a – b(x – y)]

= (x – y)(a – bx + by)

**Answer in the book is given as option (a), which is not correct.**

Solution 2

17a6b8 – 34a4b6 + 51a2b4

= 17a2b4(a4b4 – 2a2b2 + 3)

Solution 3

3x5y – 27x4y2 + 12x3y3

= 3x3y(x2 – 9xy + 4y2)

Solution 4

x2(a – b) – y2(a – b) + z2(a – b)

= (a – b)(x2 – y2 + z2)

Solution 5

(x + y)(a + b) + (x – y)(a + b)

= (a + b)(x + y + x – y)

= (a + b)2x

= 2x(a + b)

Solution 6

2b(2a + b) – 3c(2a + b)

= (2a + b)(2b – 3c)

Solution 7

12abc – 6a2b2c2 + 3a3b3c3

= 3abc(4 – 2abc + a2b2c2)

Solution 8

4x(3x – 2y) – 2y(3x – 2y)

= (3x – 2y)(4x – 2y)

= (3x – 2y)2(2x – y)

= 2(3x – 2y)(2x – y)

Solution 9

(a + 2b)(3a + b) – (a + b)(a + 2b) + (a + 2b)2

= (a + 2b)[(3a + b) – (a + b) + (a + 2b)]

= (a + 2b)(3a + b – a – b + a + 2b)

= (a + 2b)(3a + 2b)

Solution 10

6xy(a2 + b2) + 8yz(a2 + b2) – 10xz(a2 + b2)

= 2(a2 + b2)(3xy + 4yz – 5xz)

Solution 11

xy – ay – ax + a2 + bx – ab

= y(x – a) – a(x – a) + b(x – a)

= (x – a)(y – a + b)

Solution 12

3x5 – 6x4 – 2x3 + 4x2 + x – 2

= (3x5 – 6x4) – (2x3 – 4x2) + (x – 2)

= 3x4(x – 2) – 2x2(x – 2) + (x – 2)

= (x – 2)(3x4 – 2x2 + 1)

Solution 13

–x2y – x + 3xy + 3

= –x(xy + 1) + 3(xy + 1)

= (xy + 1)(3 – x)

Solution 14

6a2 – 3a2b – bc2 + 2c2

= 3a2(2 – b) + c2(–b + 2)

= 3a2(2 – b) + c2(2 – b)

= (3a2 + c2)(2 – b)

Solution 15

3a2b – 12a2 – 9b + 36

= 3a2(b – 4) – 9(b – 4)

= (3a2 – 9)(b – 4)

= 3(a2 – 3)(b – 4)

Solution 16

x2 – (a – 3)x – 3a

= x2 – ax + 3x – 3a

= x(x – a) + 3(x – a)

= (x – a)(x + 3)

Solution 17

ab2 – (a – c)b – c

= ab2 – ab + bc – c

= ab(b – 1) + c(b – 1)

= (b – 1)(ab + c)

Solution 18

(a2 – b2)c + (b2 – c2)a

= a2c – b2c + b2a – c2a

= (a2c – c2a) – (b2c – b2a)

= ac(a – c) – b2(c – a)

= ac(a – c) + b2(a – c)

= (a – c)(ac + b2)

Solution 19

a3 – a2 – ab + a + b – 1

= (a3 – a2) – (ab – b) + (a – 1)

= a2(a – 1) – b(a – 1) + (a – 1)

= (a – 1)(a2 – b + 1)

Solution 20

ab(c2 + d2) – a2cd – b2cd

= abc2 + abd2 – a2cd – b2cd

= (abc2 – b2cd) + (abd2 – a2cd)

= bc(ac – bd) + ad(bd – ac)

= bc(ac – bd) – ad(ac – bd)

= (ac – bd)(bc – ad)

Solution 21

2ab2 – aby + 2cby – cy2

= (2ab2 – aby) + (2cby – cy2)

= ab(2b – y) + cy(2b – y)

= (2b – y)(ab + cy)

Solution 22

ax + 2bx + 3cx – 3a – 6b – 9c

= (ax – 3a) + (2bx – 6b) + (3cx – 9c)

= a(x – 3) + 2b(x – 3) + 3c(x – 3)

= (x – 3)(a + 2b + 3c)

Solution 23

2ab2c – 2a + 3b3c – 3b – 4b2c2 + 4c

= (2ab2c – 2a) + (3b3c – 3b) – (4b2c2 – 4c)

= 2a(b2c – 1) + 3b(b2c – 1) – 4c(b2c – 1)

= (b2c – 1)(2a + 3b – 4c)

Factorisation Exercise EX. 13(B)

Solution 1(i)

Correct option: (a) 3(x + y)(x – y)

(2x + y)2 – (2y + x)2

= 4x2 + 4xy + y2 – 4y2 – 4xy – x2

= 3x2 – 3y2

= 3(x2 – y2)

= 3(x + y)(x – y)

Solution 1(ii)

Correct option: (b) (2 – x)(12 + x)

49 – (x + 5)2

= (7)2 – (x + 5)2

= [7 – (x + 5)][7 + (x + 5)]

= (7 – x – 5)(7 + x + 5)

= (2 – x)(12 + x)

Solution 1(iii)

Correct option: (d) (a – b)(a – b + 1)

a2 – 2ab + b2 + a – b

= (a – b)2 + (a – b)

= (a – b)(a – b + 1)

Solution 1(iv)

Correct option: (d) (x – y + 1)(x – y – 1)

x2 + y2 – 2xy – 1

= (x – y)2 – (1)2

= (x – y + 1)(x – y – 1)

Solution 1(v)

Correct option: (b) (a + 1 + b – x)(a + 1 – b + x)

a2 + 2a + 1 – b2 – x2 + 2bx

= (a2 + 2a + 1) – (b2 + x2 – 2bx)

= (a + 1)2 – (b – x)2

= [(a + 1) + (b – x)][(a + 1) – (b – x)]

= (a + 1 + b – x)(a + 1 – b + x)

Solution 2

(a + 2b)2 – (a)2

= (a + 2b + a)(a + 2b – a)

= (2a + 2b)(2b)

=4b(a + b)

Solution 3

(5a – 3b)2 – 16b2

= (5a – 3b)2 – (4b)2

= (5a – 3b + 4b)(5a – 3b – 4b)

= (5a + b)(5a – 7b)

Solution 4

a4 – (a2 – 3b2)2

= (a2)2 – (a2 – 3b2)2

= [a2 – (a2 – 3b2)][a2 + (a2 – 3b2)]

= (a2 – a2 + 3b2)(a2 + a2 – 3b2)

= 3b2(2a2 – 3b2)

Solution 5

(5a – 2b)2 – (2a – b)2

= [(5a – 2b) – (2a – b)][(5a – 2b) + (2a – b)]

= (5a – 2b – 2a + b)(5a – 2b + 2a – b)

= (3a – b)(7a – 3b)

Solution 6

1 – 25(a + b)2

= (1)2 – (5)2(a + b)2

= (1)2 – [5(a + b)]2

= [1 – 5(a + b)][1 + 5(a + b)]

= (1 – 5a – 5b)(1 + 5a + 5b)

Solution 7

4(2a + b)2 – (a – b)2

= [2(2a + b)]2 – (a – b)2

= [2(2a + b) + (a – b)] [2(2a + b) – (a – b)]

= (4a + 2b + a – b)(4a + 2b – a + b)

= (5a + b)(3a + 3b)

= 3(5a + b)(a + b)

Solution 8

25(2x + y)2 – 16(x – y)2

= [5(2x + y)]2 – [4(x – y)]2

= [5(2x + y) + 4(x – y)][5(2x + y) – 4(x – y)]

= (10x + 5y + 4x – 4y)(10x + 5y – 4x + 4y)

= (14x + y)(6x + 9y)

= 2(14x + y)(2x + 3y)

Solution 9

Solution 10

(0.7)2 – (0.3)2 = (0.7 + 0.3)(0.7 – 0.3)

= (1)(0.4)

= 0.4

Solution 11

75(x + y)2 – 48(x – y)2

= (25 × 3)(x + y)2 – (16 × 3)(x – y)2

= 3(5)2(x + y)2 – 3(4)2(x – y)2

= 3[5(x + y)]2 – 3[4(x – y)]2

= 3[5(x + y) + 4(x – y)][5(x + y) – 4(x – y)]

= 3(5x + 5y + 4x – 4y)(5x + 5y – 4x + 4y)

= 3(9x + y)(x + 9y)

Solution 12

a2 + 4a + 4 – b2

= (a2 + 4a + 4) – b2

= (a + 2)2 – b2

= (a + 2 + b)(a + 2 – b)

Solution 13

a2 – b2 – 2b – 1

= a2 – (b2 + 2b + 1)

= a2 – (b + 1)2

= (a + b + 1)(a – b – 1)

Solution 14

x2 + 6x + 9 – 4y2

= (x2 + 6x + 9) – (2y)2

= (x + 3)2 – (2y)2

= (x + 3 + 2y)(x + 3 – 2y)

Factorisation Exercise EX. 13(C)

Solution 1(i)

Correct option: (a) (x – 10)(x + 1)

x2 – 9x – 10

= x2 – 10x + x – 10

= x(x – 10) + (x – 10)

= (x – 10)(x + 1)

Solution 1(ii)

Correct option: (b) (x – 21)(x – 2)

x2 – 23x + 42

= x2 – 21x – 2x + 42

= x(x – 21) – 2(x – 21)

= (x – 21)(x – 2)

Solution 1(iii)

Correct option: (b) 2x – 1

(4x2 – 4x + 1) ÷ (2x – 1)

= (2x – 1)2 ÷ (2x – 1)

= (2x – 1)

Solution 1(iv)

Correct option: (c) (x + y – 4)(x + y + 1)

(x + y)2 – 3(x + y) – 4

Taking (x + y) = a

a2 – 3a – 4

= a2 – 4a + a – 4

= a(a – 4) + (a – 4)

= (a – 4)(a + 1)

= (x + y – 4)(x + y + 1)

Solution 1(v)

Correct option: (c) (4 + x)(15 – x)

60 + 11x – x2

= 60 + 15x – 4x – x2

= 15(4 + x) – x(4 + x)

= (4 + x)(15 – x)

**Options (a) & (c) are same.**

Solution 2

a2 + 5a + 6

= a2 + 2a + 3a + 6

= a(a + 2) + 3(a + 2)

= (a + 2)(a + 3)

Solution 3

a2 – 5a + 6

= a2 – 2a – 3a + 6

= a(a – 2) – 3(a – 2)

= (a – 3)(a – 2)

Solution 4

a2 + 5a – 6

= a2 + 6a – a – 6

= a(a + 6) – (a + 6)

= (a + 6)(a – 1)

Solution 5

x2 + 5xy + 4y2

= x2 + 4xy + xy + 4y2

= x(x + 4y) + y(x + 4y)

= (x + 4y)(x + y)

Solution 6

a2 – 3a – 40

= a2 – 8a + 5a – 40

= a(a – 8) + 5(a – 8)

= (a – 8)(a + 5)

Solution 7

x2 – x – 72

= x2 – 9x + 8x – 72

= x(x – 9) + 8(x – 9)

= (x – 9)(x + 8)

Solution 8

3a2 – 5a + 2

= 3a2 – 3a – 2a + 2

= 3a(a – 1) – 2(a – 1)

= (a – 1)(3a – 2)

Solution 9

2a2 – 17ab + 26b2

= 2a2 – 13ab – 4ab + 26b2

= a(2a – 13b) – 2b(2a – 13b)

= (2a – 13b)(a – 2b)

Solution 10

2x2 + xy – 6y2

= 2x2 + 4xy – 3xy – 6y2

= 2x(x + 2y) – 3y(x + 2y)

= (x + 2y)(2x – 3y)

Solution 11

4c2 + 3c – 10

= 4c2 + 8c – 5c – 10

= 4c(c + 2) – 5(c + 2)

= (c + 2)(4c – 5)

Solution 12

14x2 + x – 3

= 14x2 + 7x – 6x – 3

= 7x(2x + 1) – 3(2x + 1)

= (2x + 1)(7x – 3)

Solution 13

6 + 7b – 3b2

= 6 + 9b – 2b – 3b2

= 3(2 + 3b) – b(2 + 3b)

= (2 + 3b)(3 – b) 

Solution 14

5 + 7x – 6x2

= 5 + 10x – 3x – 6x2

= 5(1 + 2x) – 3x(1 + 2x)

= (1 + 2x)(5 – 3x)

Solution 15

4 + y – 14y2

= 4 + 8y – 7y – 14y2

= 4(1 + 2y) – 7y(1 + 2y)

= (1 + 2y)(4 – 7y)

Solution 16

5 + 3a – 14a2

= 5 + 10a – 7a – 14a2

= 5(1 + 2a) – 7a(1 + 2a)

= (1 + 2a)(5 – 7a)

Solution 17

(2a + b)2 + 5(2a + b) + 6

Taking (2a + b) = x

x2 + 5x + 6

= x2 + 3x + 2x + 6

= x(x + 3) + 2(x + 3)

= (x + 3)(x + 2)

= (2a + b + 3)(2a + b + 2)

Solution 18

1 – (2x + 3y) – 6(2x + 3y)2

Taking (2x + 3y) = a

1 – a – 6a2

= 1 – 3a + 2a – 6a2

= (1 – 3a) + 2a(1 – 3a)

= (1 – 3a)(1 + 2a)

= [1 – 3(2x + 3y)][1 + 2(2x + 3y)]

= (1 – 6x – 9y)(1 + 4x + 6y)

Solution 19

(x – 2y)2 – 12(x – 2y) + 32

Taking (x – 2y) = a

a2 – 12a + 32

= a2 – 4a – 8a + 32

= a(a – 4) – 8(a – 4)

= (a – 4)(a – 8)

= (x – 2y – 4)(x – 2y – 8)

Solution 20

8 + 6(a + b) – 5(a + b)2

Taking (a + b) = x

8 + 6x – 5x2

= 8 + 10x – 4x – 5x2

= 2(4 + 5x) – x(4 + 5x)

= (4 + 5x)(2 – x)

= [4 + 5(a + b)][2 – (a + b)]

= (4 + 5a + 5b)(2 – a – b)

Solution 21

2(x + 2y)2 – 5(x + 2y) + 2

Taking (x + 2y) = a

2a2 – 5a + 2

= 2a2 – 4a – a + 2

= 2a(a – 2) – (a – 2)

= (a – 2)(2a – 1)

= (x + 2y – 2)[2(x + 2y) – 1]

= (x + 2y – 2)(2x + 4y – 1)

Solution 22(i)

x2 + 14x + 49

= x2 + 2 × 7 × x + (7)2

= (x + 7)2

Hence, the given trinomial is a perfect square trinomial.

Solution 22(ii)

a2 – 10a + 25

= a2 – 2 × 5 × a + (5)2

= (a – 5)2

Hence, the given trinomial is a perfect square trinomial.

Solution 22(iii)

4x2 + 4x + 1

= (2x)2 + 2 × 2x × 1 + (1)2

= (2x + 1)2

Hence, the given trinomial is a perfect square trinomial.

Solution 22(iv)

9b2 + 12b + 16

= (3b)2 + 3b × 4 + (4)2

Since the given trinomial cannot be expressed in the form x2 + 2xy + y2, it is not a perfect square trinomial.

Solution 22(v)

16x2 – 16xy + y2

= (4x)2 + 2 × 4x × 2y + (y)2

Since the given trinomial cannot be expressed in the form a2 + 2ab + b2, it is not a perfect square trinomial.

Solution 22(vi)

x2 – 4x + 16

= (x)2 – x × 4 + (4)2

Since the given trinomial cannot be expressed in the form a2 – 2ab + b2, it is not a perfect square trinomial.

Factorisation Exercise EX. 13(D)

Solution 1(i)

Correct option: (b) x(x + 2)(x – 2)

x3 – 4x

= x(x2 – 4)

= x(x2 – 22)

= x(x + 2)(x – 2)

Solution 1(ii)

Correct option: (c) (x + y)(x – y)(x2 + y2 + 1)

x4 – y4 + x2 – y2

= (x4 – y4) + (x2 – y2)

= (x2 + y2)(x2 – y2) + (x2 – y2)

= (x2 – y2)(x2 + y2 + 1)

= (x + y)(x – y)(x2 + y2 + 1)

Solution 1(iii)

Correct option: (b) (x – 1)(x2 + a + 1)

x3 – x2 + ax + x – a – 1

= (x3 – x2) + (ax – a) + (x – 1)

= x2(x – 1) + a(x – 1) + (x – 1)

= (x – 1)(x2 + a + 1)

Solution 1(iv)

Correct option: (c) 2x(2x + 3)(2x – 3)

8x3 – 18x

= 2x(4x2 – 9)

= 2x[(2x)2 – 32]

= 2x(2x + 3)(2x – 3)

Solution 1(v)

Correct option: (c) (x – a)(x + b)

x2 – (a – b)x – ab

= x2 – ax + bx – ab

= x(x – a) + b(x – a)

= (x – a)(x + b)

Solution 2

8x2y – 18y3

= 2y(4x2 – 9y2)

= 2y[(2x)2 – (3y)2]

= 2y(2x + 3y)(2x – 3y)

Solution 3

25x3 – x

= x(25x2 – 1)

= x[(5x)2 – (1)2]

= x(5x + 1)(5x – 1)

Solution 4

16x4 – 81y4

= (4x2)2 – (9y2)2

= (4x2 + 9y2)(4x2 – 9y2)

= (4x2 + 9y2)[(2x)2 – (3y)2]

= (4x2 + 9y2)(2x + 3y)(2x – 3y)

Solution 5

x2 – y2 – 3x – 3y

= (x2 – y2) – (3x + 3y)

= (x + y)(x – y) – 3(x + y)

= (x + y)(x – y – 3)

Solution 6

x2 – y2 – 2x + 2y

= (x2 – y2) – (2x – 2y)

= (x + y)(x – y) – 2(x – y)

= (x – y)(x + y – 2)

Solution 7

3x2 + 15x – 72

= 3(x2 + 5x – 24)

= 3(x2 + 8x – 3x – 24)

= 3[x(x + 8) – 3(x + 8)]

= 3(x + 8)(x – 3)

Solution 8

2a2 – 8a – 64

= 2(a2 – 4a – 32)

= 2(a2 – 8a + 4a – 32

= 2[a(a – 8) + 4(a – 8)]

= 2(a – 8)(a + 4)

Solution 9

3x2y + 11xy + 6y

= y(3x2 + 11x + 6)

= y(3x2 + 9x + 2x + 6)

= y[3x(x + 3) + 2(x + 3)]

= y(x + 3)(3x + 2)

Solution 10

5ap2 + 11ap + 2a

= a(5p2 + 11p + 2)

= a(5p2 + 10p + p + 2)

= a[5p(p + 2) + (p + 2)]

= a(p + 2)(5p + 1)

Solution 11

a2 + 2ab + b2 – c2

= (a2 + 2ab + b2) – c2

= (a + b)2 – c2

= (a + b + c)(a + b – c)

Solution 12

x2 + 6xy + 9y2 + x + 3y

= (x2 + 6xy + 9y2) + (x + 3y)

= [x2 + 2 × x × 3y + (3y)2] + (x + 3y)

= (x + 3y)2 + (x + 3y)

= (x + 3y)(x + 3y + 1)

Solution 13

4a2 – 12ab + 9b2 + 4a – 6b

= (4a2 – 12ab + 9b2) + (4a – 6b)

= [(2a)2 – 2 × 2a × 3b + (3b)2] + 2(2a – 3b)

= (2a – 3b)2 + 2(2a – 3b)

= (2a – 3b)(2a – 3b + 2)

Solution 14

2a2b2 – 98b4

= 2b2(a2 – 49b2)

= 2b2[a2 – (7b)2]

= 2b2(a + 7b)(a – 7b)

Solution 15

a2 – 16b2 – 2a – 8b

= (a2 – 16b2) – (2a + 8b)

= [a2 – (4b)2] – 2(a + 4b)

= (a + 4b)(a – 4b) – 2(a + 4b)

= (a + 4b)(a – 4b – 2)

Factorisation Exercise TEST YOURSELF

Solution 1(i)

Correct option: (d) (a – b)(a – b)

(a + b)2 – 4ab

= a2 + b2 + 2ab – 4ab

= a2 + b2 – 2ab

= (a – b)2

= (a – b)(a – b)

Solution 1(ii)

Correct option: (d) (a2 + 8)(a + 2)(a – 2)

a4 + 4a2 – 32

= a4 + 8a2 – 4a2 – 32

= a2(a2 + 8) – 4(a2 + 8)

= (a2 + 8)(a2 – 4)

= (a2 + 8)(a + 2)(a – 2)

Solution 1(iii)

Correct option: (d) none of these

36 – 60y + 25y2

= 62 – 2 × 6 × 5y + (5y)2

= (6 – 5y)2

= (6 – 5y)(6 – 5y)

Solution 1(iv)

Correct option: (d) (x – 2y)(x – 2y – 3)

(x – 2y)2 – 3x + 6y

= (x – 2y)2 – (3x – 6y)

= (x – 2y)2 – 3(x – 2y)

= (x – 2y)(x – 2y – 3)

Solution 1(v)

Correct option: (d) (x – y)(ax – ay + b)

a(x – y)2 – by + bx

= a(x – y)2 + b(x – y)

= (x – y)[a(x – y) + b]

= (x – y)(ax – ay + b)

Solution 2(i)

6x3 – 8x2

= 2x2(3x – 4)

Solution 2(ii)

36x2y2 – 30x3y3 + 48x3y2

= 6x2y2(6 – 5xy + 8x)

Solution 2(iii)

8(2a + 3b)3 – 12(2a + 3b)2

= 4(2a + 3b)2[2(2a + 3b) – 3]

= 4(2a + 3b)2(4a + 6b – 3)

Solution 2(iv)

9a(x – 2y)4 – 12a(x – 2y)3

= 3a(x – 2y)3[3(x – 2y) – 4]

= 3a(x – 2y)3(3x – 6y – 4)

Solution 3(i)

a2 – ab(1 – b) – b3

= a2 – ab + ab2 – b3

= a(a – b) + b2(a – b)

= (a – b)(a + b2)

Solution 3(ii)

xy2 + (x – 1)y – 1

= xy2 + xy – y – 1

= xy(y + 1) – (y + 1)

= (y + 1)(xy – 1)

Solution 3(iii)

(ax + by)2 + (bx – ay)2

= a2x2 + 2abxy + b2y2 + b2x2 – 2abxy + a2y2

= (a2x2 + b2x2) + (b2y2 + a2y2)

= x2(a2 + b2) + y2(b2 + a2)

= (a2 + b2)(x2 + y2)

Solution 3(iv)

ab(x2 + y2) – xy(a2 + b2)

= abx2 + aby2 – a2xy – b2xy

= (abx2 – a2xy) + (aby2 – b2xy)

= ax(bx – ay) + by(ay – bx)

= ax(bx – ay) – by(bx – ay)

= (bx – ay)(ax – by)

Solution 3(v)

m – 1 – (m – 1)2 + am – a

= (m – 1) – (m – 1)2 + a(m – 1)

= (m – 1)(1 – m + 1 + a)

= (m – 1)(2 – m + a)

Solution 4(i)

25(2x – y)2 – 16(x – 2y)2

= [5(2x – y)]2 – [4(x – 2y)]2

= [5(2x – y) + 4(x – 2y)] [5(2x – y) – 4(x – 2y)]

= (10x – 5y + 4x – 8y)(10x – 5y – 4x + 8y)

= (14x – 13y)(6x + 3y)

= 3(14x – 13y)(2x + y)

Solution 4(ii)

16(5x + 4)2 – 9(3x – 2)2

= [4(5x + 4)]2 – [3(3x – 2)]2

= [4(5x + 4) + 3(3x – 2)][4(5x + 4) – 3(3x – 2)]

= (20x + 16 + 9x – 6)(20x + 16 – 9x + 6)

= (29x + 10)(11x + 22)

= 11(29x + 10)(x + 2)

Solution 4(iii)

25(x – 2y)2 – 4

= [5(x – 2y)]2 – [2]2

= [5(x – 2y) + 2][5(x – 2y) – 2]

= (5x – 10y + 2)(5x – 10y – 2)

Solution 5(i)

a2 – 23a + 42

= a2 – 21a – 2a + 42

= a(a – 21) – 2(a – 21)

= (a – 21)(a – 2)

Solution 5(ii)

a2 – 23a – 108

= a2 – 27a + 4a – 108

= a(a – 27) + 4(a – 27)

= (a – 27)(a + 4)

Solution 5(iii)

1 – 18x – 63x2

= 1 – 21x + 3x – 63x2

= (1 – 21x) + 3x(1 – 21x)

= (1 – 21x)(1 + 3x)

Solution 5(iv)

5x2 – 4xy – 12y2

= 5x2 – 10xy + 6xy – 12y2

= 5x(x – 2y) + 6y(x – 2y)

= (x – 2y)(5x + 6y)

Solution 5(v)

x(3x + 14) + 8

= 3x2 + 14x + 8

= 3x2 + 12x + 2x + 8

= 3x(x + 4) + 2(x + 4)

= (x + 4)(3x + 2)

Solution 5(vi)

5 – 4x(1 + 3x)

= 5 – 4x – 12x2

= 5 – 10x + 6x – 12x2

= 5(1 – 2x) + 6x(1 – 2x)

= (1 – 2x)(5 + 6x)

Solution 5(vii)

x2y2 – 3xy – 40

= x2y2 – 8xy + 5xy – 40

= xy(xy – 8) + 5(xy – 8)

= (xy – 8)(xy + 5)

Solution 5(viii)

(3x – 2y)2 – 5(3x – 2y) – 24

Taking 3x – 2y = a

a2 – 5a – 24

= a2 – 8a + 3a – 24

= a(a – 8) + 3(a – 8)

= (a – 8)(a + 3)

= (3x – 2y – 8)(3x – 2y + 3)

Solution 5(ix)

12(a + b)2 – (a + b) – 35

Taking (a + b) = x

12x2 – x – 35

= 12x2 + 20x – 21x – 35

= 4x(3x + 5) – 7(3x + 5)

= (3x + 5)(4x – 7)

= [3(a + b) + 5][4(a + b) – 7]

= (3a + 3b + 5)(4a + 4b – 7)

Solution 6(i)

15(5x – 4)2 – 10(5x – 4)

= 5(5x – 4)[3(5x – 4) – 2]

= 5(5x – 4)(15x – 12 – 2)

= 5(5x – 4)(15x – 14)

Solution 6(ii)

3a2x – bx + 3a2 – b

= (3a2x + 3a2) – (bx + b)

= 3a2(x + 1) – b(x + 1)

= (x + 1)(3a2 – b)

Solution 6(iii)

b(c – d)2 + a(d – c) + 3(c – d)

= b(c – d)2 – a(c – d) + 3(c – d)

= (c – d)[b(c – d) – a + 3]

= (c – d)(bc – bd – a + 3)

Solution 6(iv)

ax2 + b2y – ab2 – x2y

= (ax2 – ab2) – (x2y – b2y)

= a(x2 – b2) – y(x2 – b2)

= (x2 – b2)(a – y)

= (x + b)(x – b)(a – y)

Solution 6(v)

1 – 3x – 3y – 4(x + y)2

= 1 – 3(x + y) – 4(x + y)2

= 1 – 4(x + y) + (x + y) – 4(x + y)2

= [1 – 4(x + y)] + (x + y)[1 – 4(x + y)]

= (1 + x + y)(1 – 4x – 4y)

Solution 7(i)

2a3 – 50a

= 2a(a2 – 25)

= 2a(a2 – 52)

= 2a(a + 5)(a – 5)

Solution 7(ii)

54a2b2 – 6

= 6(9a2b2 – 1)

= 6[(3ab)2 – 12]

= 6(3ab + 1)(3ab – 1)

Solution 7(iii)

64a2b – 144b3

= 16b(4a2 – 9b2)

= 16b[(2a)2 – (3b)2]

= 16b(2a + 3b)(2a – 3b)

Solution 7(iv)

(2x – y)3 – (2x – y)

= (2x – y)[(2x – y)2 – 1]

= (2x – y)(2x – y + 1)(2x – y – 1)

Solution 7(v)

x2 – 2xy + y2 – z2

= (x2 – 2xy + y2) – z2

= (x – y)2 – z2

= (x – y + z)(x – y –z)

Solution 7(vi)

x2 – y2 – 2yz – z2

= x2 – (y2 + 2yz + z2)

= x2 – (y + z)2

= (x + y + z)(x – y – z)

Solution 7(vii)

7a5 – 567a

= 7a(a4 – 81)

= 7a[(a2)2 – 92]

= 7a(a2 + 9)(a2 – 9)

= 7a(a2 + 9)(a + 3)(a – 3)

Solution 7(viii)

Solution 8(i)

xy2 – xz2

= x(y2 – z2)

= x(y + z)(y – z)

Then, 9 × 82 – 9 × 22

= 9(8 + 2)(8 – 2)

= 9 × 10 × 6

= 540

Solution 8(ii)

xy2 – xz2

= x(y2 – z2)

= x(y + z)(y – z)

Then, 40 × 5.52 – 40 × 4.52

= 40(5.5 + 4.5)(5.5 – 4.5)

= 40 × 10 × 1

= 400

Solution 9(i)

(a – 3b)2 – 36b2

= (a – 3b)2 – (6b)2

= (a – 3b + 6b)(a – 3b – 6b)

= (a + 3b)(a – 9b)

Solution 9(ii)

25(a – 5b)2 – 4(a – 3b)2

= [5(a – 5b)]2 – [2(a – 3b)]2

= [5(a – 5b) + 2(a – 3b)][5(a – 5b) – 2(a – 3b)]

= (5a – 25b + 2a – 6b)(5a – 25b – 2a + 6b)

= (7a – 31b)(3a – 19b)

Solution 9(iii)

a2 – 0.36b2

= a2 – (0.6b)2

= (a + 0.6b)(a – 0.6b)

Solution 9(iv)

x4 – 5x2 – 36

= x4 – 9x2 + 4x2 – 36

= x2(x2 – 9) + 4(x2 – 9)

= (x2 + 4)(x2 – 9)

= (x2 + 4)(x + 3)(x – 3)

Solution 9(v)

15(2x – y)2 – 16(2x – y) – 15

Taking (2x – y) = a

15a2 – 16a – 15

= 15a2 – 25a + 9a – 15

= 5a(3a – 5) + 3(3a – 5)

= (5a + 3)(3a – 5)

= [5(2x – y) + 3][3(2x – y) – 5]

= (10x – 5y + 3)(6x – 3y – 5)

Solution 10

3012 × 300 – 3003

= 300(3012 – 3002)

= 300(301 + 300)(301 – 300)

= 300 × 601 × 1

= 180300

Solution 11(i)

(5z2 – 80) ÷ (z – 4)

Solution 11(ii)

10y(6y + 21) ÷ (2y + 7)

Solution 11(iii)

(a2 – 14a – 32) ÷ (a + 2)

Solution 11(iv)

39x3(50x2 – 98) ÷ 26x2(5x+7)