R S AGGARWAL AND V AGGARWAL Solutions for Class 9 Maths Chapter 8 - Triangles
Chapter 8 - Triangles MCQ
Correct option: (c)
∠A - ∠B = 42°
⇒ ∠A = ∠B + 42°
∠B - ∠C = 21°
⇒ ∠C = ∠B - 21°
In ΔABC,
∠A + ∠B + ∠C = 180°
⇒ ∠B + 42° + ∠B + ∠B - 21° = 180°
⇒ 3∠B = 159
⇒ ∠B = 53°
Correct option: (b)
∠ACD = ∠B + ∠A (Exterior angle property)
⇒ 110° = 50° + ∠A
⇒ ∠A = 60°
Correct option: (d)
Correct option: (a)
Correct option: (b)
∠EAF = ∠CAD (vertically opposite angles)
⇒ ∠CAD = 30°
In ΔABD, by angle sum property
∠A + ∠B + ∠D = 180°
⇒ (x + 30)° + (x + 10)° + 90° = 180°
⇒ 2x + 130° = 180°
⇒ 2x = 50°
⇒ x = 25°
Correct option: (a)
∠ABF + ∠ABC = 180° (linear pair)
⇒ x + ∠ABC = 180°
⇒ ∠ABC = 180° - x
∠ACG + ∠ACB = 180° (linear pair)
⇒ y + ∠ACB = 180°
⇒ ∠ACB = 180° - y
In ΔABC, by angle sum property
∠ABC + ∠ACB + ∠BAC = 180°
⇒ (180° - x) + (180° - y) + ∠BAC = 180°
⇒ ∠BAC - x - y + 180° = 0
⇒ ∠BAC = x + y - 180°
Now, ∠EAD = ∠BAC (vertically opposite angles)
⇒ z = x + y - 180°
Correct option: (b)
In ΔOAC, by angle sum property
∠OCA + ∠COA + ∠CAO = 180°
⇒ 80° + 40° + ∠CAO = 180°
⇒ ∠CAO = 60°
∠CAO + ∠OAE = 180° (linear pair)
⇒ 60° + x = 180°
⇒ x = 120°
∠COA = ∠BOD (vertically opposite angles)
⇒ ∠BOD = 40°
In ΔOBD, by angle sum property
∠OBD + ∠BOD + ∠ODB = 180°
⇒ ∠OBD + 40° + 70° = 180°
⇒ ∠OBD = 70°
∠OBD + ∠DBF = 180° (linear pair)
⇒ 70° + y = 180°
⇒ y = 110°
∴ x + y = 120° + 110° = 230°
Correct option: (a)
∠ACB + ∠ACD = 180° (linear pair)
⇒ 5y + 7y = 180°
⇒ 12y = 180°
⇒ y = 15°
Now, ∠ACD = ∠ABC + ∠BAC (Exterior angle property)
⇒ 7y = x + 3y
⇒ 7(15°) = x + 3(15°)
⇒ 105° = x + 45°
⇒ x = 60°
Chapter 8 - Triangles Ex. 8
Since, sum of the angles of a triangle is 180o
A +
B +
C = 180o
A + 76o
+ 48o = 180o
A = 180o - 124o = 56o
A = 56o
Let the measures of the angles of a triangle are (2x)o, (3x)o and (4x)o.
Then, 2x + 3x + 4x = 180 [sum of the angles of a triangle is 180o ]
9x = 180
The measures of the required angles are:
2x = (2 20)o = 40o
3x = (3 20)o = 60o
4x = (4 20)o = 80o
Let
3A = 4
B = 6
C = x (say)
Then, 3A = x
A =
4B = x
and 6C = x
C =
As
A +
B +
C = 180o
A =
B =
C =
A +
B = 108o [Given]
But
as A,
B and
C are the angles of a triangle,
A +
B +
C = 180o
108o +
C = 180o
C = 180o - 108o = 72o
Also, B +
C = 130o [Given]
B + 72o = 130o
B = 130o - 72o = 58o
Now
as, A +
B = 108o
A + 58o = 108o
A = 108o - 58o = 50o
A = 50o,
B = 58o and
C = 72o.
Since.
A ,
B and
C are the angles of a triangle .
So, A +
B +
C = 180o
Now, A +
B = 125o [Given]
125o +
C = 180o
C = 180o - 125o = 55o
Also, A +
C = 113o [Given]
A + 55o = 113o
A = 113o - 55o = 58o
Now
as A +
B = 125o
58o +
B = 125o
B = 125o - 58o = 67o
A = 58o,
B = 67o and
C = 55o.
Since, P,
Q and
R are the angles of a triangle.
So,P +
Q +
R = 180o(i)
Now,P -
Q = 42o[Given]
P = 42o +
Q(ii)
andQ -
R = 21o[Given]
R =
Q - 21o(iii)
Substituting the value of P and
R from (ii) and (iii) in (i), we get,
42o + Q +
Q +
Q - 21o = 180o
3
Q + 21o = 180o
3
Q = 180o - 21o = 159o
Q =
P = 42o +
Q
= 42o + 53o = 95o
R =
Q - 21o
= 53o - 21o = 32o
P = 95o,
Q = 53o and
R = 32o.
Given that the sum of the angles A and B of a ABC is 116o, i.e.,
A +
B = 116o.
Since, A +
B +
C = 180o
So, 116o + C = 180o
C = 180o - 116o = 64o
Also, it is given that:
A -
B = 24o
A = 24o +
B
Putting, A = 24o +
B in
A +
B = 116o, we get,
24o + B +
B = 116o
2
B + 24o = 116o
2
B = 116o - 24o = 92o
B =
Therefore, A = 24o + 46o = 70o
A = 70o,
B = 46o and
C = 64o.
Let the two equal angles, A and
B, of the triangle be xo each.
We know,
A +
B +
C = 180o
xo + xo +
C = 180o
2xo +
C = 180o(i)
Also, it is given that,
C = xo + 18o(ii)
Substituting C from (ii) in (i), we get,
2xo + xo + 18o = 180o
3xo = 180o - 18o = 162o
x =
Thus, the required angles of the triangle are 54o, 54o and xo + 18o = 54o + 18o = 72o.
Let C be the smallest angle of
ABC.
Then,
A = 2
C and
B = 3
C
Also,
A +
B +
C = 180o
2
C + 3
C +
C = 180o
6
C = 180o
C = 30o
So, A = 2
C = 2
30o
= 60o
B = 3
C = 3
30o
= 90o
The required angles of the triangle are 60o,
90o, 30o.
Let
ABC be a right angled triangle and C = 90o
Since,
A +
B +
C = 180o
A +
B = 180o -
C = 180o - 90o = 90o
Suppose A = 53o
Then, 53o + B = 90o
B = 90o - 53o = 37o
The required angles are 53o, 37o
and 90o.
Let
ABC be a right angled triangle and C = 90o
Since,
A +
B +
C = 180o
A +
B = 180o -
C = 180o - 90o = 90o
Suppose A = 53o
Then, 53o + B = 90o
B = 90o - 53o = 37o
The required angles are 53o, 37o
and 90o.
Let ABC be a triangle.
So, A <
B +
C
Adding A to both sides of the inequality,
2
A <
A +
B +
C
2
A < 180o [Since
A +
B +
C = 180o]
Similarly, B <
A +
C
B < 90o
and C <
A +
B
C < 90o
ABC is an acute angled triangle.
Let
ABC be a triangle and B >
A +
C
Since,
A +
B +
C = 180o
A +
C = 180o -
B
Therefore, we get,
B > 180o -
B
Adding
B on both sides of the inequality, we get,
B +
B > 180o -
B +
B
2
B > 180o
B >
i.e.,
B > 90o which means
B is an obtuse angle.
ABC is an obtuse angled triangle.
Since
ACB and
ACD form a linear pair.
So, ACB +
ACD = 180o
ACB + 128o = 180o
ACB = 180o - 128 = 52o
Also, ABC +
ACB +
BAC = 180o
43o + 52o
+
BAC = 180o
95o +
BAC = 180o
BAC = 180o - 95o = 85o
ACB = 52o and
BAC = 85o.
As DBA and
ABC form a linear pair.
So,DBA +
ABC = 180o
106o +
ABC = 180o
ABC = 180o - 106o = 74o
Also, ACB and
ACE form a linear pair.
So,ACB +
ACE = 180o
ACB + 118o = 180o
ACB = 180o - 118o = 62o
In ABC, we have,
ABC +
ACB +
BAC = 180o
74o + 62o + BAC = 180o
136o +
BAC = 180o
BAC = 180o - 136o = 44o
In triangle ABC,
A = 44o,
B = 74o and
C = 62o
(i) EAB +
BAC = 180o [Linear pair angles]
110o + BAC = 180o
BAC = 180o - 110o = 70o
Again, BCA +
ACD = 180o [Linear
pair angles]
BCA + 120o
= 180o
BCA = 180o - 120o = 60o
Now,
in ABC,
ABC +
BAC +
ACB = 180o
xo + 70o + 60o = 180o
x + 130o
= 180o
x = 180o - 130o
= 50o
x = 50
(ii)
In
ABC,
A
+
B +
C = 180o
30o + 40o
+
C = 180o
70o
+
C = 180o
C = 180o - 70o = 110o
Now BCA +
ACD = 180o [Linear pair]
110o
+
ACD = 180o
ACD = 180o - 110o = 70o
In
ECD,
ECD +
CDE +
CED = 180o
70o + 50o
+
CED = 180o
120o
+
CED = 180o
CED = 180o - 120o = 60o
Since
AED and
CED from a linear pair
So, AED +
CED = 180o
xo
+ 60o = 180o
xo
= 180o - 60o = 120o
x =
120
(iii)
EAF
=
BAC
[Vertically opposite angles]
BAC = 60o
In
ABC, exterior
ACD is equal to the sum of two opposite interior
angles.
So, ACD =
BAC +
ABC
115o = 60o
+ xo
xo = 115o
- 60o = 55o
x = 55
(iv)
Since AB || CD and AD is a transversal.
So, BAD =
ADC
ADC = 60o
In
ECD, we have,
E +
C +
D = 180o
xo + 45o +
60o = 180o
xo + 105o
= 180o
xo =
180o - 105o = 75o
x = 75
(v)
In
AEF,
Exterior
BED =
EAF +
EFA
100o = 40o
+
EFA
EFA = 100o - 40o = 60o
Also, CFD =
EFA [Vertically
Opposite angles]
CFD = 60o
Now
in FCD,
Exterior
BCF =
CFD +
CDF
90o = 60o +
xo
xo = 90o -
60o = 30o
x = 30
(vi)
In
ABE, we have,
A +
B +
E = 180o
75o + 65o
+
E = 180o
140o +
E = 180o
E = 180o - 140o = 40o
Now, CED =
AEB [Vertically
opposite angles]
CED = 40o
Now,
in CED, we have,
C +
E +
D = 180o
110o + 40o
+ xo = 180o
150o + xo =
180o
xo = 180o -
150o = 30o
x = 30
AB ∥ CD and AC is the transversal.
⇒ ∠BAC = ∠ACD = 60° (alternate angles)
i.e. ∠BAC = ∠GCH = 60°
Now, ∠DHF = ∠CHG = 50° (vertically opposite angles)
In ΔGCH, by angle sum property,
∠GCH + ∠CHG + ∠CGH = 180°
⇒ 60° + 50° + ∠CGH = 180°
⇒ ∠CGH = 70°
Now, ∠CGH + ∠AGH = 180° (linear pair)
⇒ 70° + ∠AGH = 180°
⇒ ∠AGH = 110°
Produce CD to cut AB at E.
Now, in BDE, we have,
Exterior CDB =
CEB +
DBE
xo =
CEB + 45o .....(i)
In AEC, we have,
Exterior CEB =
CAB +
ACE
= 55o + 30o = 85o
Putting CEB = 85o in (i), we get,
xo = 85o + 45o = 130o
x = 130
The angle BAC is divided by AD in the ratio 1 : 3.
Let BAD and
DAC be y and 3y, respectively.
As BAE is a straight line,
BAC +
CAE = 180o [linear pair]
BAD +
DAC +
CAE = 180o
y + 3y + 108o = 180o
4y = 180o - 108o = 72o
Now, in ABC,
ABC +
BCA +
BAC = 180o
y + x + 4y = 180o
[Since, ABC =
BAD (given AD = DB) and
BAC = y + 3y = 4y]
5y + x = 180
5
18 + x = 180
90 + x = 180
x = 180 - 90 = 90
Given : A ABC in which BC, CA and AB are produced to D, E and F respectively.
To prove : Exterior DCA + Exterior
BAE + Exterior
FBD = 360o
Proof : Exterior DCA =
A +
B(i)
Exterior FAE =
B +
C(ii)
Exterior FBD =
A +
C(iii)
Adding (i), (ii) and (iii), we get,
Ext. DCA + Ext.
FAE + Ext.
FBD
= A +
B +
B +
C +
A +
C
= 2A +2
B + 2
C
= 2 (A +
B +
C)
= 2 180o
[Since, in triangle the sum of all three angle is 180o]
= 360o
Hence, proved.
In ACE, we have,
A +
C +
E = 180o (i)
In BDF, we have,
B +
D +
F = 180o (ii)
Adding both sides of (i) and (ii), we get,
A +
C+
E +
B +
D +
F = 180o + 180o
A +
B +
C +
D +
E +
F = 360o.
In ΔABC, by angle sum property,
∠A + ∠B + ∠C = 180°
⇒ ∠A + 70° + 20° = 180°
⇒ ∠A = 90°
In ΔABM, by angle sum property,
∠BAM + ∠ABM + ∠AMB = 180°
⇒ ∠BAM + 70° + 90° = 180°
⇒ ∠BAM = 20°
Since AN is the bisector of ∠A,
Now, ∠MAN + ∠BAM = ∠BAN
⇒ ∠MAN + 20° = 45°
⇒ ∠MAN = 25°
BAD ∥ EF and EC is the transversal.
⇒ ∠AEF = ∠CAD (corresponding angles)
⇒ ∠CAD = 55°
Now, ∠CAD + ∠CAB = 180° (linear pair)
⇒ 55° + ∠CAB = 180°
⇒ ∠CAB = 125°
In ΔABC, by angle sum property,
∠ABC + ∠CAB + ∠ACB = 180°
⇒ ∠ABC + 125° + 25° = 180°
⇒ ∠ABC = 30°
In the given ABC, we have,
A :
B :
C = 3 : 2 : 1
Let A = 3x,
B = 2x,
C = x. Then,
A +
B +
C = 180o
3x + 2x + x = 180o
6x = 180o
x = 30o
A = 3x = 3
30o = 90o
B = 2x = 2
30o = 60o
and, C = x = 30o
Now, in ABC, we have,
Ext ACE =
A +
B = 90o + 60o = 150o
ACD +
ECD = 150o
ECD = 150o -
ACD
ECD = 150o - 90o [since
,
]
ECD= 60o
∠FGH + ∠FGE = 180° (linear pair)
⇒ 120° + y = 180°
⇒ y = 60°
AB ∥ DF and BD is the transversal.
⇒ ∠ABC = ∠CDE (alternate angles)
⇒ ∠CDE = 50°
BD ∥ FG and DF is the transversal.
⇒ ∠EFG = ∠CDE (alternate angles)
⇒ ∠EFG = 50°
In ΔEFG, by angle sum property,
∠FEG + ∠FGE + ∠EFG = 180°
⇒ x + y + 50° = 180°
⇒ x + 60° + 50° = 180°
⇒ x = 70°
AB ∥ CD and EF is the transversal.
⇒ ∠AEF = ∠EFD (alternate angles)
⇒ ∠AEF = ∠EFG + ∠DFG
⇒ 65° = ∠EFG + 30°
⇒ ∠EFG = 35°
In ΔGEF, by angle sum property,
∠GEF + ∠EGF + ∠EFG = 180°
⇒ x + 90° + 35° = 180°
⇒ x = 55°
AB ∥ CD and AE is the transversal.
⇒ ∠BAE = ∠DOE (corresponding angles)
⇒ ∠DOE = 65°
Now, ∠DOE + ∠COE = 180° (linear pair)
⇒ 65° + ∠COE = 180°
⇒ ∠COE = 115°
In ΔOCE, by angle sum property,
∠OEC + ∠ECO + ∠COE = 180°
⇒ 20° + ∠ECO + 115° = 180°
⇒ ∠ECO = 45°
AB ∥ CD and EF is the transversal.
⇒ ∠EGB = ∠GHD (corresponding angles)
⇒ ∠GHD = 35°
Now, ∠GHD = ∠QHP (vertically opposite angles)
⇒ ∠QHP = 35°
In DQHP, by angle sum property,
∠PQH + ∠QHP + ∠QPH = 180°
⇒ ∠PQH + 35° + 90° = 180°
⇒ ∠PQH = 55°
AB ∥ CD and GE is the transversal.
⇒ ∠EGF + ∠GED = 180° (interior angles are supplementary)
⇒ ∠EGF + 130° = 180°
⇒ ∠EGF = 50°
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change