Class 8 MAHARASHTRA STATE TEXTBOOK BUREAU Solutions Maths Chapter 5: Expansion formulae
Expansion formulae Exercise Ex. 5.1
Solution 1(1)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
⇒ (a + 2)(a - 1) = a2 + [2 + (-1)]a + 2 × (-1)
= a2 + (2 - 1)a - 2
= a2 + a - 2
Solution 1(2)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
⇒ (m - 4)(m + 6) = m2 + [(-4) + 6]m + (-4) × 6
= m2 + 2m - 24
Solution 1(3)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
⇒ (p + 8)(p - 3) = p2 + [8 + (-3)]p + 8 × (-3)
= p2 + 5p - 24
Solution 1(4)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
⇒ (13 + x)(13 - x) = 132 + [x + (-x)]13 + x × (-x)
= 169 + 0 × 13 - x2
= 169 - x2
Solution 1(5)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
⇒ (3x + 4y)(3x + 5y)= (3x)2 + (4y + 5y)3x + 4y × 5y
= 9x2 + 9y × 3x + 20y2
= 9x2 + 27xy + 20y2
Solution 1(6)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
⇒ (9x - 5t)(9x + 3t) = (9x)2 + (-5t + 3t)9x + (-5t) × 3t
= 81x2 - 2t × 9x - 15t2
= 81x2 - 18xt - 15t2
Solution 1(7)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
Solution 1(8)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
Solution 1(9)
We know that,
(x + a)(x + b) = x2 + (a + b)x + ab
Expansion formulae Exercise Ex. 5.2
Solution 1
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing (k + 4)3 with (a + b)3, we get
a = k and b = 4
∴ (k + 4)3 = k3 + 3 × k2 × 4 + 3 × k × 42 + 43
= k3 + 12k2 + 3 × k × 16 + 64
= k3 + 12k2 + 48k + 64
Solution 2
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing (7x + 8y)3 with (a + b)3, we get
a = 7x and b = 8y
∴ (7x + 8y)3 = (7x)3 + 3 × (7x)2 × 8y + 3 × 7x × (8y)2 + (8y)3
= 343x3 + 3 × 49x2 × 8y + 3 × 7x × 64y2 + 512y3
= 343x3 + 147x2 × 8y + 21x × 64y2 + 512y3
= 343x3 + 1176x2y + 1344xy2 + 512y3
Solution 3
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing (7 + m)3 with (a + b)3, we get
a = 7 and b = m
∴ (7 + m)3 = (7)3 + 3 × (7)2 × m + 3 × 7 × m2 + m3
= 343+ 3 × 49 × m + 3 × 7 × m2 + m3
= 343+ 147m + 21m2 + m3
Solution 4
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing 523 = (50 + 2)3 with (a + b)3, we get
a = 50 and b = 2
∴ 523 = 503 + 3 × (50)2 × 2 + 3 × 50 × 22 + 23
= 125000+ 3 × 2500 × 2 + 3 × 50 × 4 + 8
= 125000+ 6 × 2500 + 150 × 4 + 8
= 125000+ 15000 + 600 + 8
= 140608
Solution 5
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing 1013 = (100 + 1)3 with (a + b)3, we get
a = 100 and b = 1
∴ 1013 = 1003 + 3 × (100)2 × 1 + 3 × 100 × 1 + 13
= 1003 + 3 × (100)2 × 1 + 3 × 100 × 1 + 13
= 1000000 + 3 × 10000 + 300 + 1
= 1030301
Solution 6
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing with (a + b)3, we get
a = x and b =
= x3 + 3 × x2 × + 3 × x × +
= x3 + 3x+ +
Solution 7
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing with (a + b)3, we get
a = 2m and b =
= (2m)3 + 3 × (2m)2 × + 3 × 2m × +
= 8m3 + 3 × 4m2 × + 6m × +
= 8m3 + m2+ m +
Solution 8
We know that (a + b)3 = a3 + 3a2b + 3ab2 + b3
Comparing with (a + b)3, we get
a = and b =
+ 3 × × + 3 × × +
= + 3 × × + 3 × × +
= + 3 × + +
= + + +
Expansion formulae Exercise Ex. 5.3
Solution 1(1)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing (2m - 5)3 with (a - b)3, we get
a = 2m and b = 5
∴ (2m - 5)3= (2m)3 - 3 × (2m)2 × 5 + 3 × 2m × 52 - 53
= 8m3 - 3 × 4m2 × 5 + 3 × 2m × 25 - 125
= 8m3 - 60m2 + 150m - 125
Solution 1(2)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing (4 - p)3 with (a - b)3, we get
a = 4 and b = p
∴ (4 - p)3= 43 - 3 × 42 × p + 3 × 4 × p2- p3
= 64 - 3 × 16p + 12p2 - p3
= 64 - 48p + 12p2 - p3
Solution 1(3)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing (7x - 9y)3 with (a - b)3, we get
a = 7x and b = 9y
∴ (7x - 9y)3= (7x)3 - 3 × (7x)2 × 9y + 3 × 7x × (9y)2- (9y)3
= 343x3 - 3 × 49x2 × 9y + 3 × 7x × 81y2- 729y3
= 343x3 - 147x2 × 9y + 21x × 81y2- 729y3
= 343x3 - 1323x2y + 1701xy2- 729y3
Solution 1(4)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing (58)3 = (60 - 2)3 with (a - b)3, we get
a = 60 and b = 2
∴ (60 - 2)3= (60)3 - 3 × (60)2 × 2 + 3 × 60 × 22- 23
= 216000 - 3 × 3600 × 2 + 180 × 4 - 8
= 216000 - 21600 + 720 - 8
= 195112
Solution 1(5)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing (198)3 = (200 - 2)3 with (a - b)3, we get
a = 200 and b = 2
∴ (200 - 2)3= (200)3 - 3 × (200)2 × 2 + 3 × 200 × 22- 23
= 8000000 - 3 × 40000 × 2 + 600 × 4 - 8
= 8000000 - 240000 + 2400 - 8
= 7762392
Solution 1(6)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing with (a - b)3, we get
a = 2p and b =
= (2p)3- 3 × (2p)2 × + 3 × 2p × -
= 8p3- 3 × 4p2 × + 3 × 2p × -
= 8p3- 6p + -
Solution 1(7)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing with (a - b)3, we get
a = 1 and b =
= 13- 3 × 12 × + 3 × 1 × -
= 1- + 3 × -
= 1- + -
Solution 1(8)
We know that (a - b)3 = a3- 3a2b + 3ab2- b3
Comparing with (a - b)3, we get
a = and b =
=
Solution 2(1)
We know that (a + b)3 = a3+ 3a2b + 3ab2+ b3 and
(a - b)3 = a3- 3a2b + 3ab2- b3
Consider,
(2a + b)3 = (2a)3 + 3 × (2a)2 × b + 3 × 2a × b2 +b3
= 8a3 + 3 × 4a2b + 6ab2 + b3
= 8a3 + 12a2b + 6ab2 + b3
Similarly, (2a - b)3 = 8a3 - 12a2b + 6ab2 - b3
∴ (2a + b)3 - (2a - b)3
= 8a3 + 12a2b + 6ab2 + b3 - (8a3 - 12a2b + 6ab2 - b3)
= 8a3 + 12a2b + 6ab2 + b3 - 8a3 + 12a2b - 6ab2 + b3
= 12a2b + 12a2b + b3 + b3
= 24a2b + 2b3
Solution 2(2)
We know that (a + b)3 = a3+ 3a2b + 3ab2+ b3 and
(a - b)3 = a3- 3a2b + 3ab2- b3
Consider,
(3r - 2k)3
= (3r)3 - 3 × (3r)2 × 2k + 3 × 3r × (2k)2 -(2k)3
= 27r3 - 3 × 9r2 × 2k + 9r × 4k2 - 8k3
= 27r3 - 54r2k + 36rk2 - 8k3
Similarly, (3r + 2k)3 = 27r3 + 54r2k + 36rk2 + 8k3
∴ (3r - 2k)3 + (3r + 2k)3
= 27r3 - 54r2k + 36rk2 - 8k3 + 27r3 + 54r2k + 36rk2 + 8k3
= 27r3 + 27r3 + 36rk2 + 36rk2
= 54r3 + 72rk2
Solution 2(3)
We know that (a + b)3 = a3+ 3a2b + 3ab2+ b3 and
(a - b)3 = a3- 3a2b + 3ab2- b3
Consider,
(4a - 3)3
= (4a)3 - 3 × (4a)2 × 3 + 3 × 4a × 32 -33
= 64a3 - 3 × 16a2 × 3 + 3 × 4a × 9 -27
= 64a3 - 144a2 + 108a -27
Similarly, (4a + 3)3 = 64a3 + 144a2 + 108a +27
(4a - 3)3 - (4a + 3)3
= 64a3 - 144a2 + 108a -27 - (64a3 + 144a2 + 108a +27)
= 64a3 - 144a2 + 108a -27 - 64a3 - 144a2 - 108a -27
= - 144a2 - 144a2 - 27 - 27
= -288a2 - 54
Solution 2(4)
We know that (a + b)3 = a3+ 3a2b + 3ab2+ b3 and
(a - b)3 = a3- 3a2b + 3ab2- b3
Consider,
(5x - 7y)3
= (5x)3 - 3 × (5x)2 × 7y + 3 × 5x × (7y)2 -(7y)3
= 125x3 - 3 × 25x2 × 7y + 3 × 5x × 49y2 -343y3
= 125x3 - 525x2y + 735xy2 -343y3
Similarly, (5x + 7y)3 = 125x3 + 525x2y + 735xy2 +343y3
∴ (5x - 7y)3 + (5x + 7y)3
= 125x3 - 525x2y + 735xy2 -343y3 + 125x3 + 525x2y + 735xy2 +343y3
= 125x3 + 125x3 + 735xy2 + 735xy2
= 250x3 + 1470xy2
Expansion formulae Exercise Ex. 5.4
Solution 1(1)
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Comparing (2p + q + 5)2 with (a + b + c)2, we get
a = 2p, b = q, c = 5
∴ (2p + q + 5)2
= (2p)2 + q2 + 52 + 2 × 2p × q + 2 × q × 5 + 2 × 2p × 5
= 4p2 + q2 + 25 + 4pq + 10q + 20p
Solution 1(2)
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Comparing (m + 2n + 3r)2 with (a + b + c)2, we get
a = m, b = 2n, c = 3r
∴ (m + 2n + 3r)2
= m2 + (2n)2 + (3r)2 + 2 × m × 2n + 2 × 2n × 3r + 2 × m × 3r
= m2 + 4n2 + 9r2 + 4mn + 12nr + 6mr
Solution 1(3)
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Comparing (3x + 4y - 5p)2 with (a + b + c)2, we get
a = 3x, b = 4y, c = -5p
∴ (3x + 4y - 5p)2
= (3x)2 + (4y)2 + (-5p)2 + 2 × 3x × 4y + 2 × 4y × (-5p) + 2 × 3x × (-5p)
= 9x2 + 16y2 + 25p2 + 24xy - 40py - 30px
Solution 1(4)
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Comparing (7m - 3n - 4k)2 with (a + b + c)2, we get
a = 7m, b = -3n, c = - 4k
∴ (7m - 3n - 4k)2
= (7m)2 + (-3n)2 + (-4k)2 + 2 × 7m × (-3n) + 2 × (-3n) × (-4k) + 2 × 7m × (-4k)
= 49m2 + 9n2 + 16k2 - 42mn + 24nk - 56mk
Solution 2(1)
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Comparing (x - 2y + 3)2 with (a + b + c)2, we get
a = x, b = -2y, c = 3
∴ (x - 2y + 3)2
= x2 + (-2y)2 + 32 + 2 × x × (-2y) + 2 × (-2y) × 3 + 2 × x × 3
= x2 + 4y2 + 9 - 4xy - 12y + 6x
(x + 2y - 3)2
= x2 + (2y)2 + (-3)2 + 2 × x × 2y + 2 × 2y × (-3) + 2 × x × (-3)
= x2 + 4y2 + 9 + 4xy - 12y - 6x
∴ (x - 2y + 3)2 + (x + 2y - 3)2
= x2 + 4y2 + 9 - 4xy - 12y + 6x + x2 + 4y2 + 9 + 4xy - 12y - 6x
= 2x2 + 8y2 + 18 - 24y
Solution 2(2)
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Comparing (3k - 4r - 2m)2 with (a + b + c)2
a = 3k, b = -4r, c = -2m
∴ (3k - 4r - 2m)
= (3k)2 + (-4r)2 + (-2m)2 + 2 × 3k × (-4r) + 2 × (-4r) × (-2m) + 2 × 3k × (-2m)
= 9k2 + 16r2 + 4m2 - 24kr + 16rm - 12km
Also, (3k + 4r - 2m)2
= (3k)2 + (4r)2 + (-2m)2 + 2 × 3k × 4r + 2 × 4r × (-2m) + 2 × 3k × (-2m)
= 9k2 + 16r2 + 4m2 + 24kr - 16rm - 12km
∴ (3k - 4r - 2m)2 - (3k + 4r - 2m)2
= 9k2 + 16r2 + 4m2 - 24kr + 16rm - 12km - (9k2 + 16r2 + 8m2 + 24kr - 16rm - 12km)
= 9k2 + 16r2 + 4m2 -24kr + 16rm - 12km - 9k2 - 16r2 - 4m2 - 24kr + 16rm + 12km
= -24kr -24kr + 16rm + 16rm
= -48kr + 32rm
Solution 2(3)
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Comparing (7a - 6b + 5c)2 with (a + b + c)2, we get
a = 7a, b = -6b, c = 5c
∴ (7a - 6b + 5c)2
= (7a)2 + (-6b)2 + (5c)2 + 2 × 7a × (-6b) + 2 × (-6b) × (5c) + 2 × 7a × 5c
= 49a2 + 36b2 + 25c2 - 84ab - 60bc + 70ac
Also, (7a + 6b - 5c)2
= (7a)2 + (6b)2 + (-5c)2 + 2 × 7a × 6b + 2 × 6b × (-5c) + 2 × 7a × (-5c)
= 49a2 + 36b2 + 25c2 + 84ab - 60bc - 70ac
∴ (7a - 6b + 5c)2 + (7a + 6b - 5c)2
= 49a2 + 36b2 + 25c2 - 84ab - 60bc + 70ac + 49a2 + 36b2 + 25c2 + 84ab - 60bc - 70ac
= 49a2 + 49a2 + 36b2 + 36b2 + 25c2 + 25c2 - 60bc - 60bc
= 98a2 + 72b2 + 50c2 - 120bc