Request a call back

Join NOW to get access to exclusive study material for best results

Class 11-science H C VERMA Solutions Physics Chapter 5: Newton's Laws of Motions

Newton's Laws of Motions Exercise 79

Solution 1

 

  

  

From law of kinematics,

  

  

  

  

Solution 2

  

 

By law of kinematics ,

   

  

  

  

Solution 3

  

  

  

  

  

  

  

Solution 4

 

 

  

  

  

Solution 5

 

  

Solution 6

Slope of v-t graph gives  acceleration,

t=25, a= slope of straight line from t=0 to t=35= =5m/s2

  

  

  

  

  

Solution 7

 

  

  

Solution 8

From   

  

  

Solution 9

  

  

 

(-ve sign =>  is opposite to displacement)

Solution 10

  

  

Solution 11

 

  

 

5a=10

a=2m/s2

  

 

  

  

  

Solution 12

 

a)

  

  

  

As man moves up, h decrease   

As   

And F=Fmax=mg

b)  

  

Newton's Laws of Motions Exercise 80

Solution 13

 

  

 

R=mAa0-0.5g

=0.5(2-10)=-4N

(-ve sign=> force acts opposite to our convention) 

Solution 14

a) pseudo force acts downward

=> T=m(a0+g)=0.05(1.2+9.8)=0.55N

b)Fp (psend   force) acts downward , but a0=-ve

=> T=m(-a0+g)=0.05(-1.2+9.8)=0.43N

c) Fb=0 as a0=0 => T=mg=0.05x9.8=0.49N

d)F0 acts upward => T=m(-a0+g)=0.43N

e) Fp acts upward but a=-ve

 T=m(-(-a0)+g)

 =0.05(1.2+9.8)=0.55N

f) Fp=0 as a0=0

 =>T=mg=0.49N 

Solution 15

W=Wmax (when Fp is along mg)

W=Wmin (when Fp is opposite to mg)

Wmax=m(a0+g)=72 ……………(1)

Wmin=m(-a0+g)=60 ……………(2)

a)Adding equation (1) and (2)

 mg= =66kg

b)Subtracting equation (1) and (2)

  a0=

Solution 16

 

  

 

T- 1.5g-  =1.5a T-3g- =-3a

 T= 1.5g-  +1.5a T=3g- -3a

 

 1.5g-  +1.5a=3g- -3a

 4.5a= (1.5)

 a= =3.593m/s2

Force on spring

  Balance=2T

 =2x(1.5a+ )

   

 =43.1N

Mass (reading ) of spring=  

 =  

 = =4.4kg 

Solution 17

  

1st Case:

 mg=-kx

 x= =  

 =-0.196m=-0.2m

2nd Case:

 m=3kg

 x'= =-0.294m=-0.3m

|x'-x|=0.1m 

Solution 18

  

  

  

  

  

  

  

  

Solution 19

 

  

Bv is constant

 Mg-B=B-( M- )g

 2Mg=2B+  g

  =2  

Solution 20

 

  

B force is constant

  

     

     

 

  

Solution 21

  

  

 =  

  

  

To go undeflected   

  

  

  ,  

  

  

  

ð V=Vmin if sin  ->1 => ->90  

ð i.e Vmin  along x- axis

Solution 22

 

  

 m1g +m2a=m2(g-a)

 (m1+m2)a=(m2-m1)g

    

a) use x-x0=  

  

b) T=m1(g+a)=m1(9.8+3.266)

 =0.3(13.06)

 =3.918N

c)F=2T=2x3.918=7.8N 

Solution 23

Use law of kinematics v=u+at

 v=0+3.26x2

 =6.52m/s

m2 is moving down with v

m1 is moving down with v

at t=25, m2 stops

m1 moves upward and reaches v=0

v=0, u=6.52

0=u+at=6.52+(-9.8)t

t= =0.66s

Solution 24

  

  

For 0.1m-> mA=10x0.10=1kg

For 0.2m-> mB=10x0.20=2kg

  

 a+20=32-2a=>3a=12

 =>a=4m/s2……………………{a is towards right as32N>20N}

 R=20+1a=24N 

Newton's Laws of Motions Exercise 81

Solution 25

      ……….(1)

     ……….(2)

 

mg sin ma = mg sin +ma 

g(sin - sin )=2a

a=  

Solution 26

  

  

  

  

  

Solution 27

 

  

F+5g-5a=2a+2g+F

3g=7a =>a= =4.2m/  

After breaking T=0

m1a=F+5g=1+5g

a=  

  

Solution 28

 

  

 

T=  

  

  

  ………………………………………………(A)

  

 …………………………….……………………(B)

Solving (A) and (B), we get

  

    

  

 

  

  

  

a1-a2 = =  

a1+a2=  

a1 =  upward

a2 (acceleration of m2)=  down

a3 (acceleration of m3)=  down

using law of kinematics, S=ut+ a  

  

  

  

Solution 29

a1=0

2T=m1g

T=m2(g-a2)……………………..T=m3(g+a2)

  

  

  

  

Solution 30

 

  

a= =5m/  

Solution 31

  

 

a) Take pulley A as reference print

length of string running through pulleys A,B and mass M be   

  

  

{  is constant}  0=2 +  

  

Length of string through pulley B and mass 2M be   

  

  

0=  

{acceleration of 2M body = }

  

  

  

  (acceleration of mass M)=   

 

  

 

  

b)   

C)

 

  

 

  

  

Horizontal Component is R cos 45  

=  

Solution 32

  

 

 

Take pulley A as reference point length of string through Mass M

  

(lAis constant)

  

  

Length of string through Mass 2M

  

  

  

  

 

 

  

 

  

 

 

Solving (1) and (2), we get

  

  

  

  

  

(upward as our convention was downward, so we got a -ve sign)

Newton's Laws of Motions Exercise 82

Solution 33

  

 

 

  

 

Solving (1) and (2),

a=g tan   

Solving (3) and (4)

R sin  +M'a=Mg-Ma

  

  

  

  

  

Solution 34

  

 

 

Length of string through mass A

  

  

  

Length of string through mass B

  

  

  

 

  

 

  

  

  

 

  

 

Pulley A= reference point

Length of string through 2kg mass

  

  

  

Length of string through 5kg mass

  

  

  

 

  

 

 

  

  

  

  

  

 

 

  

 

 

Length of string to A

  

  

  

  

  

 

  

 

  

  

  

  

  

  

Solution 35

For 50g

 

  

 

T-0.05g=0.05a ……………..(1)

T'-(T+ m2g sin 30°)= m2a 

T'-T-0.05g=0.1a ………………(2)

0.5g-T'=0.5a ………………(3)

 T'=0.5g-0.5a

Putting equation (3) in (2),

T=T'-0.05g-0.1a

=0.5g-0.5a-0.05g-0.1a

T=0.45g-0.6a

0.05a+0.05g=0.45g-0.60a

0.65a=0.4g

  

Solution 36

  

 

  

  

Fapplied=T

Use kinematics law,   

  

  

Solution 37

   

 

That means both are in same direction.

 

  

Solution 38

  

 

T=Tmin if a=0 so nem tension of second monkey 

T'-2g=0

T'=20N

Tension of 1st Monkey  T=Tmin=5g+T'

=70N

Tmin=70NTmax=105N

Tmin<T<Tmax 

Solution 39

  

 

  

 

  

Newton's Laws of Motions Exercise 83

Solution 40

  

 

Use

  

  

  

Solution 41

1)

 

    

 

T sin Ѳ = ma

T cosѲ = mg

  

2)

 

  

 

  

  

Solution 42

  

 

Block will be acted upon by g (only g)