Request a call back

Join NOW to get access to exclusive study material for best results

Class 11-science H C VERMA Solutions Physics Chapter 13 - Fluid Mechanics

Fluid Mechanics Exercise 273

Solution 1

Pressure due to water

P = h g = 4 × 1000 × 10

 = 40000 N/m²

Since pressure is proportional to height of water. If tap is open height of water decreases, so pressure decreases.

Solution 2

(a)  

 

  

 

  

  

=   

=  

 

(b) Pressure at bottom of mercury

  

  

  

Solution 3

  

 

  

  

  

  

Solution 4

 

(a)   

  

   

 

(b) 

   

 

Cylindrical water column is balanced by bottom of glass and remaining by side wall.

  

   

  

  

  

 

Solution 5

Now atmospheric pressure will not act.

(a)

(b)

 

No change will occur in answer if height, area and volume is kept same irrespective of shape of container.

 

Solution 6

  

 

  

  

  

  

 

Fluid Mechanics Exercise 274

Solution 7

F= PA

  = 107 N/m2

Force depends upon area not on orientation.

Solution 8

  

 

(a)    

  = 60000N

(b)  Force of strip of width 'dx'

  

   

   = x×1000×10×2dx

 = 20,000 xdx

(c)  Torque = force × distance

  

(d)Total force by water on side wall

  

  

(e)  Total torque on side wall

  

 

Solution 9

  

  

Weight difference in air and water is due to buoyancy force

  

  

  

Solving, equation (1) and (2)

  

Solution 10

  

Now,

  

  

  

  

 

Solution 11

 

  

 

 

N + B = mg

N = mg - B

 = 160 × 10-3 × 10 - V wg

 =   

 =   

 N = 1.4

 

 

Solution 12

(a) In equilibrium,

Weight of boat = Buoyancy force

  

  

  

(b) Let Vfbe the volume of boat filled with water before water starts coming in from the sides. So,

  

  

  

Fraction of boat's volume filled =   =  

 

Solution 13

 

 

Let side of ice cube be x.

In equilibrium,

  g + mg =  g

 ( x3) + 0.5 =x3 w 

 (0.9x103)x3 + 0.5 = x3(103)

 X=17 cm

 

Solution 14

Volume of ice inside kerosene oil and water be Vk and Vwrespectively

Vice = Vk + Vw ----- (1)

Since, Ice is in equilibrium,

Miceg = FB

    g= g+ g  

  (0.9)=  --------- (2)

Solving equation (1) and (2)

  =1

Solution 15

 

 

Let external edge of iron cube be x

In equilibrium,

Weight of iron cube = Buyoncy force

 g =  g

6x[(0.1)x2(8000)] = x3(1000)

X=4.8cm

Solution 16

 

 

In equilibrium

( + )g = ( + ) g

(0.2+ )=( /  +  / )  

(0.2+mpb) = (0.2/0.8 + mpb/11.3)

mpb = 0.0548 kg

Solution 17

 

 

In equilibrium,

mpbg + mwg = Vwood  water g

mpb +200 = 200/0.8

mpb = 50g

Solution 18

Initially,

mg =   

 b (12)3g=(12)2(12/5)( )g

 =13.6/5 gm/cc

Let x be the height of water column after the water is poured

 

 

mg=x(12)2 +(12-x)(12)2 g

(13.6/5)(12)3 = x(12)2+(12-x)(12)2(13.6)

X=10.4cm

Solution 19

In equilibrium,

mg=  

 [  -   (6)3]=    g

  =0.865  

  =865kg/m3

Solution 20

( + )g=V  

  (5)3  + 0.1×1000 =   (5)3

 = 0.8gm/cc

Solution 21

Reading by spring balance = mg-buoyancy  force

 = mg - V g

 = mg -    g

  = [1 - (1/7800)(1.293)]g

  = [1 - (1/800)(1.293)]g

  = 1.0015

Solution 22

T=2  

Water behaves as spring having spring constant K=A g

T=2  

 = 2  

T= 0.5 sec

Solution 23

 

In equilibrium

Kx+V wg = mg

(500 ×  )x +  (5)2( )(1)(980) =  (5)2(20)(8)(980)

X=23.5 cm

T=2  

Water behaves as spring of spring constant   = A g

Now, spring and water spring are in parallel combination

  =   +   

T = 2  

T= 0.935 sec 

Solution 24

(a)

 

 

In equilibrium,

Kx + V g = mg

(50)x+(0.5/800)(1000)(10) = (0.5)(10)

X=-0.025 m

X= - 2.5 cm

So, spring will be in compression

(b)Since, system is completely inside water so unbalanced force will be due to spring only. Buyoncy force doesn't change

T=2  

 = 2  

T =   /5  

Solution 25

Let the length of the edge of the ice block when it just leaves contact with the bottom of glass be x and height of water after melting be h.

Weight = Buoyancy force

(x)3 g = (x2h) g

0.9x = h ----- (1)

Volume of water formed by melting of ice

(4)3 - (x)3 =  r2h - x2h ------ (2)

Solving equation (1) and (2)

X=2.26cm

Solution 26

 

 

  =  + g =  + g+  

  -   = la/g

Solution 27

From continuity equation

A1V1+ A2V2 = A3V3

(12×d)(20) + (8×d)(16) = (16×d)( )

  = 23 km/hr

Solution 28

A) Discharge = Area × velocity

(1×10-6) = (4×10-6)

  = 0.25 m/s

B) A1V1 = A2V2

(4)(0.25) = (2)

  = 0.5 m/s

 C) From Bernoulli's equation

 PA +   = PB +  

 PA +    = PB +  

 PA - PB = 94 N/m2

Solution 29

(a) VA = 0.25 m/s

(b) VB = 0.5 m/s

(c) PA +   + ghA = PB +  + ghB

PA +   = PB +  +1000×10×(hB-hA)

 [here, hB-hA=  cm]

PA - PB = 0 N/m2

Solution 30

(a) VA = 0.25 m/s

(b) VB = 0.5 m/s

(c) PA +   + ghA = PB +  + ghB

PA +   = PB +  +1000×10×(hB-hA)

 [here, hB-hA=  cm]

PA - PB = 188 N/m2

Solution 31

(a) AaVa = AbVb

(1)(10) = (0.5)(Vb)

Vb = 20 cm/s

(b) PA +   + ghA = PB +  + ghB

PA +   +1x1000xhA= PB + +1x1000xhB

 [here, hB-hA=5cm]

PB-PA = 4850 dyne/cm2

PB-PA = 485 N/m2

Solution 32

AaVa = AbVb

4Va = 2Vb

2Va = Vb ----- (1)

PA +   + ghA = PB +  + ghB

PA +   = PB +    [here, hA=hB=0cm]

PA-PB =   

2×1×1000 =   

VA = 36.5 cm/sec

Rate of discharge = VAAa

  = (36.5)(4)

 Q = 146 cm3/sec

Solution 33

Q = AaVa = AbVb

500 = 5(Va) = 2(Vb)

Va = 100 cm/sec

Vb = 250 cm/sec

PA +   = PB +   

PA - PB =  (VB2 - VA2)

980 × 13.6 × h =   [(250)2 - (100)2]

h = 1.97 cm

Solution 34

(a) V =

 =

V = 4m/s

(b) V =

 =

V =   m/s

(c) Q =  = av

   dV = (2mm2)( )dt

(d) dV = -Adh = a( )dt

 -=

 t= 6.5 hrs

Solution 35

Let h be the height of hole from bottom of tank

V =   

T =   

R = vT

 =   

To maximize Range,

  = 0

H-2h = 0

h=   

Get Latest Study Material for Academic year 24-25 Click here
×