Request a call back

Join NOW to get access to exclusive study material for best results

Class 11-science H C VERMA Solutions Physics Chapter 7 - Circular Motion

Circular Motion Exercise 114

Solution 1

Speed of the moon=distance/time

  

=1025.4m/s

Acceleration of moon=

Ar = 2.73 × 10-3m/s2 

Solution 2

 

Speed of particle at equator=distance/time

 

 

=465.1m/s

 

Acceleration of particle=

 

 

Ar = 0.038m/s2 

Solution 3

(a)

Velocity of particle at t=1 sec

V=2t

V=2(1)

V=2cm/s

Radial acceleration

  

Ar=4cm/s2

(b)

Tangential acceleration

At=   

At=2cm/s2

(c)

An=   

An=

An =  cm/s 

Solution 4

Horizontal force required=Centrifugal force

  

  

F=500N

Solution 5

Let banking angle be θ 

tan θ=  

tan θ=  =   

  

Solution 6

Let banking angle be θ 

tan θ =  

tan θ =  

  

Solution 7

Centrifugal force=Frictional force

  = µN

  =µmg 

µ=  =   

µ=0.25

Solution 8

tan θ=

tan30° =  

v 17m/s

Solution 9

Coulomb force=Centrifugal force

  =  

 =(9.1 × 10-31 )v2

V=2.2 × 106m/s

Solution 10

 

 

At highest point

T + mg =   

For minimum speed, T=0

  

Solution 11

Radius of the circle =   = 60cm

Angular speed=1500rpm

ω =1500 ×   

ω =157 rad/sec

Force=mRω2 

  (0.6 )(157)2

F=14.8N

This force is exerted by friction. On particle it acts towards the centre of the circle and on fan blade outside the circle due to action-reaction pair.

So, force along the surface=14.8N 

Solution 12

ω = 33   rpm =  rpm

  

 

For mosquito to remain at rest on L.P record.

Frictional force Centrifugal force

µN mRω2

µmg mRω2

  

  

Solution 13

 

 

 

Tsin θ=  ------------------ (1)

Tcosθ =mg -------------------(2)

Divide,

tan θ =  

tan θ =  

θ = 45° 

Circular Motion Exercise 115

Solution 14

 

At lowest point

  

= (0.1)(10) +   

T = 1.2N

Solution 15

 

At angle θ

  

 

T = mg(1- )+   

T = (0.1)(10)(1-  )+  

T 1.16

 

 

Solution 16

 

At extreme position,

T= mgcos θ0 

(No centrifugal force as v=0 at extreme position.)

Solution 18

For banking angle,

tan θ=  

=  

 

tan θ=0.5

  

   

=15m/s

  

=54kmph

Vmin=  

=  

=4m/s

Vmin=14.7kmph 

Solution 19

(a)

 

 

At highest point,

  

For maximum speed, N=0

  

Vma×=  

 

(b)

 

V= =  

Let at angle 𝚽 it loses its contact with road

N'=0

N'+ =mgcos𝚽 

0+ = mgcos𝚽 

Cos𝚽=  

𝚽=60° or  rad.

So it loses contact after a distance πR/3 along the bridge from the highest point.

(c)

Normal contact at any angle 𝚽 

N'=mgcos 𝚽-   ---->(1)

So, as motorcycle moves along the curve 𝚽 increases, so cos𝚽 decreases and hence N' decreases.

Normal contact will be minimum at the extreme point.

At extreme point

𝚽=   = and N'=0

From equation (1),

0=mgcos   

  

Solution 20

 

From free body diagram

ff=  

µN=

(µmg) =  

 

Squaring and solving,

v=[(µ2g2-a2)R2]1/4

Solution 21

  

 

(a)

For block not to slip

ff mLω2 

µN mLω2 

µmg mLω2

ω2

ωma×=  

(b)

Now, ruler makes uniformly accelerated circular motion at angular acceleration of α,so tangential acceleration 

At=Lα 

Ft = mat

Ft = mLα 

Radial force Fc = mLω'2 

Where ω' is maximum angular speed at which it slips 

µN=  

 

µmg=  

 

squaring and solving,

ω'=[ - α2]1/4 

Solution 22

 

 

(a)

Velocity of cyclist =5m/s

At point B

NB +   = mg

NB = (100)(10)-   

NB = 975N

At point D

ND = mg +   

ND = (100)(10) +  

ND = 1025N

(b)

No force acts along surface at point B and D

So,ffB=ffD=0

At point C,

 

acceleration=0

So,ffc = mgsinθ

ffc = (100)(10)sin450

ffc = 707N

­(C)

Before C,

Nc+  =mgcos45° 

Nc=(100)(10)   

NC = 682N

After C,

N'C=  + mgcos45° 

N'C =   

N'C = 732N

(d) ff=µN

For minimum friction force normal contact should be minimum.

Normal contact is minimum at point just before C.

ff=mgsinѲ =  µN

(100)(10)sin45°= µ(682)

µ = 1.037

Solution 23

 

 

ω =20 rpm=20×   

ω =  (rad/sec)

R=1.5m

Frictional force=mR ω2 

=(15)(1.5)  

 =10 π2 

Solution 24

 

 

 

Particle will have tendency to move up. So, frictional force is in downward direction.

r=Rsinθ----->(ί)

N= mgcosθ+ sinθ------->(ii)

ff + mgsinθ=  cosθ------->(iii)

ff= µN-------->(iv)

on solving,

ωma×=  

For ωmin, particle will have tendency to move down. So, frictional force acting upward direction.

r=Rsinθ----->(1)

N= mgcosθ +  sinθ------->(ii)

Mgsinθ = ff+   cosθ------->(iii)

ff= µN-------->(iv)

on solving,

ωmin=

Solution 25

 

 

At highest point

Aradial=  

  

  

Solution 26

 

 

Since acceleration in horizontal direction is zero

ucosθ = vcos   

   

aradial­=

  

Solution 27

 

 

(a)

  

(b)

ff=µN=   

(c)

Let acceleration along velocity be at for the block

0-ff=m- at

  =mat

at=-  

(d)

V =  

  =  

lnv| =  (x)  

V=v0e-2πµ

Circular Motion Exercise 116

Solution 28

Component of force mRω2 along the line AB will be responsible for motion of particle

Force= mRω2cosθ 

ma= mRω2cosθ 

a=Rω2cosθ

 

u=0

s=L

using s=ut+ at2

l= (Rω2cosθ) t2

  

Solution 29

(a)

 

  

  

N=0.2

(b)

At the time of just sliding

  

   

  

µ=tanθ 

 

θ=tan-1(0.58)

θ=300 

Solution 30

 

 

 

2mRω2-T=2ma

T- mRω2=ma

Adding both,

mRω2=3ma

  

T- mRω2=   

T=  mRω2 

Circular Motion Exercise 155

Solution 17

 

 

(a)

At equator, normal contact force

N+mRω2=mg

Reading N=mg-mRω2 

So, fraction less than true weight=  

=  

=    

 

=3.5×10-3

(b)

Balance reading= (True weight)

mg-mRω2= ( (mg)

mRω2=  

ω= =   

T'=2×3.14×  (in sec)

T'=  (in hrs.)

T'=2hrs

Get Latest Study Material for Academic year 24-25 Click here
×