Question
Mon June 25, 2012 By: Arvindh Jambunathan
 

Q1.For a*b= a+b-4 for a,b belongs to Z show that * is both commutative & associative also find identity element in Z. Q2.For a*b= 3ab/5 for a,b belongs to Q . check for commutativity & associativity.

Expert Reply
Tue June 26, 2012
Answer 1 . Given : .For a*b= a+b-4 for a,b belongs to Z
                to prove : * is both commutative & associative
To find : identity element in Z
 

for commutativity : b*a = b+a - 4  for a,b belongs to Z 

 as addition is communicative operation   

  therefore a*b is equal to b*a 

hence it is commutative.

 

for associativity :

(a*b) *c=  (a+b -4)*c 

            =(a+b -4) +c - 4

         = a+b+c - 8........(1)

 

a*(b*c)= a*(b + c -4) 

             =a+ b+c -4 - 4

            =a+b+c- 8....................(2)

 

since (1) is equal to (2) , therefore it  is  associative.

 

now to find the identity element in a*b=a+b+1 in Z

 

Let e be the identity element in Z for the binary operator * on Z . 

 

then , 

 

a * e = a  =e * a  for all a belongs to Z

 

a*e=a and e*a =a  for all a belongs to Z

 a+e -4 =a  and e+a - 4 =a

     

hence e=  4                               

 

e= 4 is the identity element in Z 

 

Answer 2 . Given : .For a*b= (3ab) /5 for a,b belongs to Q

                to check : * is both commutative & associative
 
for commutativity : b*a = (3ba ) /5  for a,b belongs to Q 

 as multipliaction is communicative operation   

  therefore a*b is equal to b*a 

hence it is commutative.

 

for associativity :

(a*b) *c=  ( (3ab) /5 )*c 

            = ( 3 ((3ab)/5 ) c) /5

             =(9abc) /25.....................(1)

 

a*(b*c)= a* ((3bc) / 5) 

             = ( 3 ( a ) ( ( 3bc ) / 5 ) ) / 5

            =(9abc) / 25....................(2)

 

since (1) is equal to (2) , therefore it  is  associative.

 

 

Mon July 17, 2017

plz.. solve Q10

Home Work Help