Please wait...
Contact Us
Contact
Need assistance? Contact us on below numbers

For Enquiry

10:00 AM to 7:00 PM IST all days.

Business Inquiry (North)

Business Inquiry (West / East / South)

OR

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

For any content/service related issues please contact on this number

022-62211530

Mon to Sat - 10 AM to 7 PM

The moment of inertia of a hollow sphere of
mass M having internal and external radii R
and 2R about an azis passing through its centre and perpendicular to its plane is 
A)3/2 MR² B)13/32 MR²  C)31/35 MR² D) 62/35 MR²

Asked by chandanbr6004 26th November 2017, 10:22 AM
Answered by Expert
Answer:
The moment of inertia of a hollow sphere of
mass M having internal and external radii R
and 2R about an azis passing through its centre and perpendicular to its plane is 
A)3/2 MR² B)13/32 MR²  C)31/35 MR² D) 62/35 MR²
rho equals m over V
V equals 4 over 3 pi space left parenthesis left parenthesis 2 R right parenthesis cubed minus R cubed right parenthesis space
space equals space fraction numerator 4 x 7 over denominator 3 end fraction pi space R cubed

rho equals m over V equals space fraction numerator 3 m over denominator 4 x 7 x pi space R cubed end fraction



c o n s i d e r i n g space e l e m e n t space o f space t h i c k n e s s space d x space w i t h space m a s s space d m space space left parenthesis d x space i s space a t space a space d i s tan c e space x space f r o m space t h e space c e n t e r right parenthesis

m a s s equals d m equals rho 4 pi x squared d x
equals fraction numerator 3 m space over denominator 4 x 7 x pi space R cubed end fraction space X space 4 pi x squared d x space equals fraction numerator 3 over denominator 7 R cubed end fraction m x squared d x space

f o r space t h i s space e l e m e n t a l space h o l l o w space s p h e r e space m o m e n t space o f space i n e r t i a space w i l l space b e

d I equals 2 over 3 space d m space x squared
d I equals 2 over 7 space open parentheses M over R cubed close parentheses space x to the power of 4 d x

a f t e r space i n t e g r a t i n g

I equals integral subscript R superscript 2 R end superscript 2 over 35 open parentheses M over R cubed close parentheses x to the power of 5



equals 62 over 35 M space R squared
Answered by Expert 27th November 2017, 2:12 PM
Rate this answer
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

You have rated this answer 10/10

Your answer has been posted successfully!

Chat with us on WhatsApp