Please wait...
1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

For any content/service related issues please contact on this toll free number

022-62211530

Mon to Sat - 11 AM to 8 PM

integrate: dx/tanx+cotx+secx+cosecx

Asked by Akshansh prasad 17th September 2013, 3:29 PM
Answered by Expert
Answer:

let A = Tanx+Cotx+Secx+Cosecx

     A = (Sinx/Cosx)+(Cosx/Sinx)+(1/Cosx)+(1/Sinx)

        = (Sinx^2+Cosx^2+Sinx+Cosx)/Sinx.Cosx

        = (1 + Sinx+Cosx)/Sinx.Cosx

Multiply by (Sinx+Cosx-1) in denominator and numerator

     A  = (Sinx+Cosx+1)(Sinx+Cosx-1) / (Sinx.Cosx)(Sinx+Cosx-1)

          = (Sinx^2+Cosx^2+2Sinx.Cosx-1) / (Sinx.Cosx)(Sinx+Cosx-1)

          = (1+2Sinx.Cosx-1) / (Sinx.Cosx)(Sinx+Cosx-1)     

          = (2Sinx.Cosx) / (Sinx.Cosx)(Sinx+Cosx-1)    

          = 2 / (Sinx+Cosx-1)  

    I     = integrate dx/(Tanx+Cotx+Secx+Cosecx)

    I    = integrate dx/A

    I    = integrate (Sinx+Cosx-1) dx/2

    I   =  (-Cosx + Sinx -x)/2 + C

Answered by Expert 19th September 2013, 10:03 AM
Rate this answer
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

You have rated this answer /10

Your answer has been posted successfully!

Chat with us on WhatsApp