If the points A(7, -2), B(5, 1) and C(3, k) are collinear, then find the value of k.
If the points A, B and C are collinear, then the area of triangle ABC = 0.
[7(1-k)+5(k+2)+3(-2-1)] = 0
7-7k+5k+10-9=0
-2k+8=0
k=4
Thus, the points are collinear for k=4.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
You have rated this answer /10
Browse free questions and answers by Chapters
- 1 Polynomials
- 2 Coordinate Geometry
- 3 Surface Areas and Volumes
- 4 Statistics
- 5 Probability
- 6 Triangles
- 7 Circles
- 8 Pair of Linear Equations in 2 Variables
- 9 Quadratic Equations
- 10 Arithmetic Progression
- 11 Some Applications of Trigonometry
- 12 Introduction to Trigonometry
- 13 Constructions
- 14 Areas Related to Circles
- 15 Real Numbers
- 16 Pair of Linear Equations in Two Variables