1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days
8104911739

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

For any content/service related issues please contact on this toll free number

022-62211530

Mon to Sat - 11 AM to 8 PM

# Find the intervals in which the function f(x) =x3-6x2+9x+15 is increasing or decreasing

Asked by Gurpreet Kaur 29th July 2012, 11:29 AM
Answer : Given : f(x) = x3 - 6x2 +9x +15
To find : the interval in which f(x) is increasing or decreasing

Now
f(x) = x3 - 6x2 +9x +15
f `(x) = 3x2 - 12x + 9 = 3 (x2 - 4x + 3 )

for f(x) to increase
f `(x) > 0
=>  3 (x2 - 4x + 3 ) > 0
=> x2 - 4x + 3  > 0
=> (x - 3) ( x - 1) > 0

+                                                    _                                        +
<----------------------|----------------------|-------------------->
- infinity              1                        3                     + infinity

=>   In the interval -infinity < x < 1  and (union)    3 < x < +infinity f(x) is increasing

and    in the interval  1 < x < 3  , f(x) is decreasing Answer
Answered by Expert 30th July 2012, 2:05 AM
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 10

You have rated this answer /10