Please wait...
1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days


Thanks, You will receive a call shortly.
Customer Support

You are very important to us

For any content/service related issues please contact on this toll free number


Mon to Sat - 11 AM to 8 PM

CBSE - IX - Physics - Motion

derivation of equations of motion by graphical method

Asked by gauri 17th September 2013, 12:53 AM
Answered by Expert


First Equation of Motion

Graphical Derivation of First Equation

Consider an object moving with a uniform velocity u in a straight line. Let it be given a uniform acceleration a at time t = 0 when its initial velocity is u. As a result of the acceleration, its velocity increases to v (final velocity) in time t and S is the distance covered by the object in time t.

The figure shows the velocity-time graph of the motion of the object.

Slope of the v - t graph gives the acceleration of the moving object.

Thus, acceleration = slope = AB = 



v - u = at

v = u + at  I equation of motion

Graphical Derivation of Second Equation

Distance travelled S = area of the trapezium ABDO

= area of rectangle ACDO + area of DABC

(v = u + at I eqn of motion; v - u = at)

Graphical Derivation of Third Equation

S = area of the trapezium OABD.

Substituting the value of t in equation (1) we get,

2aS = (v + u) (v - u)

(v + u)(v - u) = 2aS [using the identity a2 - b2 = (a+b) (a-b)]

v2 - u2 = 2aS  III Equation of Motion

Answered by Expert 18th September 2013, 4:34 PM

Rate this answer

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

You have rated this answer /10

Report an issue
Your answer has been posted successfully!

Related Question

Answered by Expert
Answered by Expert
Answered by Expert
Answered by Expert
Answered by Expert

Latest Questions

CBSE XII Science Physics

Asked by haroonrashidgkp 20th March 2018, 4:49 PM

CBSE VII Grammar

Asked by zarnupatel88 20th March 2018, 4:17 PM

CBSE XII Science Mathematics

Asked by akshitaasia 20th March 2018, 2:58 PM