1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days
8104911739

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

022-62211530

Mon to Sat - 11 AM to 8 PM

An object of mass 20 kg is dropped from a height ‘h’ metres as shown in the tables below.(g = 10 m/s2)Table A Height from which an object is dropped ‘h’ (m) Velocity of an object falling from the height ‘v2’ (m/s2) 10 0 2 80 Table B Height from which an object is dropped ‘h’ (m) Velocity of an object falling from the height ‘v2’ (m/s2) 10 0 2 40 Which of the above tables has wrong data in terms of the law of conservation of energy of an object falling from height ‘h’ metres?

Asked by Topperlearning User 9th November 2016, 3:51 PM

Table A:

 Height from which an object is dropped ‘h’ (m) Velocity of an object falling from the height ‘v2’ (m/s2) Potential energy mgh (J) Kinetic energy ½mv2 (J) TE = PE + KE 10 0 20 × 10 ×10 = 2000 ½ × 20 × 0 = 0 2000 2 80 20 × 10 ×2 = 400 ½ × 20 × 80 = 800 1200

Table B:

 Height from which an object is dropped ‘h’ (m) Velocity of an object falling from the height ‘v2’ (m/s2) Potential energy mgh (J) Kinetic energy ½mv2 (J) TE = PE + KE 10 0 20 × 10 × 10 = 2000 ½ × 20 × 0 = 0 2000 2 40 20 × 10 × 2 = 400 ½ × 20 × 40 = 400 800

According to the law of conservation of energy, the sum of the potential energy and kinetic energy of the object should remain the same at every point during its fall.

Answered by Expert 9th November 2016, 5:51 PM
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 10

You have rated this answer /10