An aeroplane can carry a maximum of 200 passengers. A profit of Rs 400 is made on each first class ticket and a profit of Rs 300 is made on each economy class ticket. The airline reserves at least 20 seats for first class. However, at least 4 times as many passengers prefer to travel by economy class to by the first class. Determine how many each type of ticket must be sold in order to maximum the profit for the airline. What is maximum profit?
Let x and y be the numbers of first class tickets and economy class tickets respectively we have the following LPP
Maximum 400x + 300y
st x + y 200
x 20
y 4x
x 0, y
0
Let us draw the graph of the above LPP
Thus, the feasible region is ABC and the corner points are A(20,180), B(40,160) and C(20,80)
The value of the objective function at the corner points are:
The maximum of the objective function is 64000 and it attains at A(40,160).
That is 40 first class tickets and 160 economy class tickets must be sold to get the maximum profit.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
You have rated this answer /10
- Biology Question Answers for CBSE Class 12 Science
- Chemistry Question Answers for CBSE Class 12 Science
- Economics Question Answers for CBSE Class 12 Science
- Hindi Question Answers for CBSE Class 12 Science
- Mathematics Question Answers for CBSE Class 12 Science
- Physics Question Answers for CBSE Class 12 Science
Browse free questions and answers by Chapters
- 1 Inverse Trigonometric Functions
- 2 Continuity and Differentiability
- 3 Applications of Derivatives
- 4 Linear Programming
- 5 Relations and Functions
- 6 Matrices
- 7 Determinants
- 8 Integrals
- 9 Applications of Integrals
- 10 Differential Equations
- 11 Vector Algebra
- 12 Three Dimensional Geometry
- 13 Probability