Please wait...
1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

For any content/service related issues please contact on this toll free number

022-62211530

Mon to Sat - 11 AM to 8 PM

a Copper wire of negligible mass 1m long and cross sectional area 0.000001m^2 is kept on a smooth horizontal table with 1 end fixed. A ball of mass 1Kg is attached to the other end. The wire and the ball are rotating with an angular velocity of 20 rad/s. If the elongation of the wire is 0.001m. Find Young Modulus of wire? If on increasing the velocity to 100 rad/s the wire breaks down. Find the breaking Stress?

Asked by Abhishek Saxena 9th December 2011, 6:39 PM
Answered by Expert
Answer:
Area of crosssection = 0.000001 m2
 (pi) r2 = 0.000001
 
r = 0.001/sqrt(pi)
Young's Modulus is defined as (F/A)/(dL/L) where F is the force, A the cross sectional area, dL the change in length and L the original length.  
In this case F is a combination of the centripetal force and the gravitational force.
F = mrw^2 +mg where w is the angular velocity
   = 1 * 0.001/sqrt(pi) * (20)2  + 1 * 9.8
Y = (1 * 0.001/sqrt(pi) * (20)2  + 1 * 9.8) / 0.000001  * (0.001)/1
Young's Modulus is a measure of the stiffness of a material. It states how much a material will stretch (i.e., how much strain it will undergo) as a result of a given amount of stress.
If we put angular velocity 100 instead of 20 in above formula , we will get the breaking stress.
Answered by Expert 12th December 2011, 10:38 AM
Rate this answer
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

You have rated this answer /10

Your answer has been posted successfully!

Latest Questions

CBSE XI Science Physics
Asked by gargpuneet989 25th June 2018, 10:35 PM

Chat with us on WhatsApp