1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days
8104911739

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

022-62211530

Mon to Sat - 11 AM to 8 PM

# a Copper wire of negligible mass 1m long and cross sectional area 0.000001m^2 is kept on a smooth horizontal table with 1 end fixed. A ball of mass 1Kg is attached to the other end. The wire and the ball are rotating with an angular velocity of 20 rad/s. If the elongation of the wire is 0.001m. Find Young Modulus of wire? If on increasing the velocity to 100 rad/s the wire breaks down. Find the breaking Stress?

Asked by Abhishek Saxena 9th December 2011, 6:39 PM
Area of crosssection = 0.000001 m2
(pi) r2 = 0.000001

r = 0.001/sqrt(pi)
Young's Modulus is defined as (F/A)/(dL/L) where F is the force, A the cross sectional area, dL the change in length and L the original length.
In this case F is a combination of the centripetal force and the gravitational force.
F = mrw^2 +mg where w is the angular velocity
= 1 * 0.001/sqrt(pi) * (20)2  + 1 * 9.8
Y = (1 * 0.001/sqrt(pi) * (20)2  + 1 * 9.8) / 0.000001  * (0.001)/1
Young's Modulus is a measure of the stiffness of a material. It states how much a material will stretch (i.e., how much strain it will undergo) as a result of a given amount of stress.
If we put angular velocity 100 instead of 20 in above formula , we will get the breaking stress.
Answered by Expert 12th December 2011, 10:38 AM
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 10

You have rated this answer /10

### Free related questions

16th January 2017, 11:36 AM
16th January 2017, 11:39 AM
16th January 2017, 12:12 PM
RELATED STUDY RESOURCES :