1800-212-7858 (Toll Free)
9:00am - 8:00pm IST all days
8104911739

or

Thanks, You will receive a call shortly.
Customer Support

You are very important to us

022-62211530

Mon to Sat - 11 AM to 8 PM

# 3D

Asked by 3rd April 2010, 10:15 AM

The vector (2, 3, 1) is normal (i.e perpendicular) to the plane 2x + 3y + z = 1.
The vector (1, 3, 2) is normal to the plane x + 3y + 2z = 2.

Now, the vector or cross product of these two normal vectors gives a vector which is perpendicular to both of them and which is therefore parallel to the line of intersection of the two planes. So this cross product will give a direction vector for the line of intersection.
The cross product of (2, 3, 1) and (1, 3, 2) is (3, -3, 3).

In order to find the vector equation of the line of intersection, we also need to find the position vector from the origin of some point which lies on it. So we need to find some point which lies on both the planes because then it must lie on their line of intersection. Any point which lies on both planes will do.

We can see that both planes will have points for which x = 0.
These points in 2x + 3y + z = 1 will have 3y + z = 1.
These points in x + 3y + 2z = 2 will have 3y + 2z = 2.
Solving these two equations simultaneously gives y = 0 and z = 1. So the point with position vector (0, 0, 1) lies on the line of intersection.
Therefore the equation of the line of intersection is

(x, y, z) = (0, 0, 1) + t (3, -3, 3)

=> x + 2y + (z-1) = 0.

Since, positive x axis makes angle α with this line,

therefore, (3, -3, 3).(1, 0, 0) = |(3, -3, 3)| |(1, 0, 0)| cosα

Regards Topperlearning.

Answered by Expert 23rd April 2010, 12:05 AM
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 10

You have rated this answer /10

### Free related questions

25th March 2017, 8:24 PM
RELATED STUDY RESOURCES :