SIR PLEASE PROVE
Asked by gunjansingh
| 6th Dec, 2009,
06:10: PM
(cosecA - secA ) ( cotA - tanA) =
[(cosA - sinA)/(cosAsinA)][(cos2A - sin2A)/(cosAsinA)] =
[(cosA - sinA)(cosA - sinA)(cosA + sinA)]/(cosAsinA) =
[(cosA - sinA)2(cosA + sinA)]/(cosAsinA) =
[(cos2A + sin2A - 2sinAcosA)(cosA + sinA)]/(cosAsinA) =
[(1 - 2sinAcosA)(cosA + sinA)]/(cosAsinA) =
[(1 - 2sinAcosA)/(cosAsinA)][(cosA + sinA)/(cosAsinA)] =
(secA cosecA -2 )(cosecA + secA )
Regards,
Team,
TopperLearning.
Answered by
| 6th Dec, 2009,
07:28: PM
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change