show that 4sinxsin(x+pi/3)sin(x+2pi/3)=sin3x
Asked by pooja dev | 20th Nov, 2010, 06:43: PM
Dear Student,
Simply expand the terms to:
4sinx(sinx/2 + √3/2cosx)(-sinx/2+ √3/2cosx)
=> sinx (sinx + √3cosx)(-sinx+ √3cosx)
=> sinx (3cos2x – sin2x)
=> sinx (3 – 3sin2x –sin2x)
=> sinx (3 – 4sin2x)
=> 3sinx – 4sin3x
=> sin3x
Regards Topperelearning
Simply expand the terms to:
4sinx(sinx/2 + √3/2cosx)(-sinx/2+ √3/2cosx)
=> sinx (sinx + √3cosx)(-sinx+ √3cosx)
=> sinx (3cos2x – sin2x)
=> sinx (3 – 3sin2x –sin2x)
=> sinx (3 – 4sin2x)
=> 3sinx – 4sin3x
=> sin3x
Regards Topperelearning
Answered by | 21st Nov, 2010, 12:25: PM
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change