Q) In the figure,AB=AC,D is the point in the interior of triangle ABC such that angle DBC=angle DCB. Prove that AD bisects angle BAC of triangle ABC.

Asked by banerjee_milky
| 27th Jun, 2017,
07:51: PM
Expert Answer:

Answered by Rebecca
| 28th Jun, 2017,
09:34: PM
Application Videos
Concept Videos
- In fig. 12.116 , T is a point on the side QR of ∆ PQR and S is a point such that RT=St. Prove that PQ+PR>QS
- In the figure, ABCD is a square and PAB is a triangle such that AQ = BR. Prove that DPQR is an isosceles triangle.
- If the vertex angle of an isosceles triangle is 50° ,find the other angels
- show that BX=CY.
- AD is an altitude of an isosceles triangle ABC in which AB=AC.Show that ( i )AD bisects BC (ii) AD bisects angle A.
- If the segments drawn perpendicular to the two sides of a triangle from the mid point of the third side be congruent and equally inclined to the third side, prove that the triangle is isosceles.
- If the altitudes from two vertices of a triangle to the opposite sides are equal, prove that the triangle is isosceles.
- Prove that the bisector of the vertical angle of an isosceles triangle bisects the base.
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change