prove that vectors -2i -2j+4k , -2i+4j -2k , 4i -2j -2k are coplanar ?

Asked by harshgarg18012003 | 26th Jun, 2019, 09:11: PM

Expert Answer:

begin mathsize 16px style negative 2 straight i with hat on top space minus 2 straight j with hat on top plus 4 straight k with hat on top space comma space minus 2 straight i with hat on top plus 4 straight j with hat on top space minus 2 straight k with hat on top space comma space 4 stack straight i space with hat on top minus 2 straight j with hat on top space minus 2 straight k with hat on top
Condition space on space coplanar space vectors space is space scalar space tripple space product space of space vectors space is space zero.
open vertical bar table row cell negative 2 end cell cell negative 2 end cell 4 row cell negative 2 end cell 4 cell negative 2 end cell row 4 cell negative 2 end cell cell negative 2 end cell end table close vertical bar
equals negative 2 left parenthesis negative 8 minus 4 right parenthesis plus 2 left parenthesis 4 plus 8 right parenthesis plus 4 left parenthesis 4 minus 16 right parenthesis
equals 0
Hence comma space given space vectors space are space coplanar. end style

Answered by Sneha shidid | 27th Jun, 2019, 09:21: AM