PROVE THAT THE POINTS(a,b,c),(b,c+a)and(c,a+b) are collinear
Asked by Shambhu Nath Tiwary | 15th Nov, 2015, 10:44: PM
Expert Answer:
The pointsare said to be collinear if the area of the triangle formed by these three points (a, b+c), (b, c+a) and (c, a+b) is zero.

Answered by Vijaykumar Wani | 16th Nov, 2015, 11:32: AM
Related Videos
- question
- in each of the following find the value of k for which the points are collinear . 1) (7,-2), (5,1) ,(3,k)
- In each of the following, find the value of a for which the given points are collinear. (ii) (a-3-2a), (-a+1,2a) and (-4-a,6-2a)
- The 27th question...
- Find the area of the Triangle ABC, with vertex A(1,-4) and midpoint of AB and AC as X(2,-1) and Y(0,-4) respectively.
- in RD Sharma's solution , ex.6.5 , Q.24, why we have taken the value 1/2 with both positive and negative sign. What is the reason for doing this?????
- find the area of triangle whose vertices are( - 8, 4)( - 6, 6) and (-3, 9)
- If (2,4),(2t,6t),(3,8) are collinear, then t=
- Find the area of a triangle whose vertices are A(6,3), B(-3,5) and C(4,-2).
- Show that the points A (a, b+c), B (b, c + a) and C (c, a + b) are collinear.
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change