origin of life and evolution

Asked by  | 17th Oct, 2008, 02:09: PM

Expert Answer:

That is the basis of evolution and how life originated on this Earth.

The steps involved in origin of life is as follows:

  1. Plausible pre-biotic conditions result in the creation of certain basic small molecules (monomers) of life, such as amino acids. This was demonstrated in the Miller-Urey experiment by Stanley L. Miller and Harold C. Urey in 1953.
  2. Phospholipids (of an appropriate length) can spontaneously form lipid bilayers, a basic component of the cell membrane.
  3. The polymerization of nucleotides into random RNA molecules might have resulted in self-replicating ribozymes (RNA world hypothesis).
  4. Selection pressures for catalytic efficiency and diversity result in ribozymes which catalyse peptidyl transfer (hence formation of small proteins), since oligopeptides complex with RNA to form better catalysts. Thus the first ribosome is born, and protein synthesis becomes more prevalent.
  5. Proteins outcompete ribozymes in catalytic ability, and therefore become the dominant biopolymer. Nucleic acids are restricted to predominantly genomic use.

The basic chemicals from which life is thought to have formed are: Methane, Ammonia, Water, Hydrogen sulfide, Carbon dioxide or carbon monoxide and Phosphate.

The biologist John Desmond Bernal suggested that there were a number of clearly defined "stages" that could be recognised in explaining the origin of life.

  • Stage 1: The origin of biological monomers
  • Stage 2: The origin of biological polymers
  • Stage 3: The evolution from molecules to cell

 The RNA world hypothesis suggests that relatively short RNA molecules could have spontaneously formed that were capable of catalyzing their own continuing replication.  Early cell membranes could have formed spontaneously from proteinoids, protein-like molecules that are produced when amino acid solutions are heated – when present at the correct concentration in aqueous solution, these form microspheres which are observed to behave similarly to membrane-enclosed compartments. Other possibilities include systems of chemical reactions taking place within clay substrates or on the surface of pyrite rocks. Factors supportive of an important role for RNA in early life include its ability to act both to store information and catalyse chemical reactions (as a ribozyme); its many important roles as an intermediate in the expression and maintenance of the genetic information (in the form of DNA) in modern organisms; and the ease of chemical synthesis of at least the components of the molecule under conditions approximating the early Earth. 

 

Answered by  | 17th Oct, 2008, 05:52: PM

Queries asked on Sunday & after 7pm from Monday to Saturday will be answered after 12pm the next working day.