If the points(x, y) is equidistant from the point (a+b, b-a) and (a-b, a+b) , prove bx=ay

 

Asked by Shitladevi | 22nd Aug, 2018, 09:56: AM

Expert Answer:

begin mathsize 16px style Accoding space to space the space question comma
square root of open square brackets straight x minus open parentheses straight a plus straight b close parentheses close square brackets squared plus open square brackets straight y minus open parentheses straight b minus straight a close parentheses close square brackets end root squared equals square root of open square brackets straight x minus open parentheses straight a minus straight b close parentheses close square brackets squared plus open square brackets straight y minus open parentheses straight b plus straight a close parentheses close square brackets squared end root
open square brackets straight x minus open parentheses straight a plus straight b close parentheses close square brackets squared plus open square brackets straight y minus open parentheses straight b minus straight a close parentheses close square brackets squared equals open square brackets straight x minus open parentheses straight a minus straight b close parentheses close square brackets squared plus open square brackets straight y minus open parentheses straight b plus straight a close parentheses close square brackets squared
After space simpyfying space this space we space get space
ay minus bx equals bx minus ay
2 ay equals 2 bx
ay equals bx end style

Answered by Sneha shidid | 23rd Aug, 2018, 10:30: AM