if cosecA+cotA=11/2 Find tanA
Asked by chethan U | 22nd Jul, 2012, 05:24: PM
Expert Answer:
Answer : Given : cosecA+cotA=11/2
To Find : tanA
=> cosecA + cotA = 11 / 2
=> (1/sinA ) + (cosA / sinA) = 11/2 {using cosecA = 1/sinA and
cotA = cosA /sinA }
=>(1+cosA) / sinA = 11/2
=> 2cos2(A/2) / 2 sin(A/2)cos(A/2) = 11/2 {using 1+ cos 2A = 2cos2A
ans sin2A = 2sinA cosA }
=> cos(A/2) / sin(A/2) = 11/2
=>cot(A/2) = 11/2 {using cotA = cosA/sinA}
=>tan(A/2) = 2/11 { using tanA = 1/cotA }
Now using tan2A = 2tanA /( 1 - tan2A),we get
=> tanA = 2tan(A/2) / ( 1 - tan2(A/2))
=> tanA =( 2* (2/11)) / ( 1 - (2/11)2 )
=> tanA = (4/11) / (1 - (4/121) )
=> tanA = (4/11) / (117/121)
=>tanA = 44 / 117 Answer
Answer : Given : cosecA+cotA=11/2
To Find : tanA
=> cosecA + cotA = 11 / 2
=> (1/sinA ) + (cosA / sinA) = 11/2 {using cosecA = 1/sinA and
cotA = cosA /sinA }
=>(1+cosA) / sinA = 11/2
=> 2cos2(A/2) / 2 sin(A/2)cos(A/2) = 11/2 {using 1+ cos 2A = 2cos2A
ans sin2A = 2sinA cosA }
=> cos(A/2) / sin(A/2) = 11/2
=>cot(A/2) = 11/2 {using cotA = cosA/sinA}
=>tan(A/2) = 2/11 { using tanA = 1/cotA }
Now using tan2A = 2tanA /( 1 - tan2A),we get
=> tanA = 2tan(A/2) / ( 1 - tan2(A/2))
=> tanA =( 2* (2/11)) / ( 1 - (2/11)2 )
=> tanA = (4/11) / (1 - (4/121) )
=> tanA = (4/11) / (117/121)
=>tanA = 44 / 117 Answer
Answered by | 22nd Jul, 2012, 08:41: PM
Related Videos
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change