If a + b + c = 0
a2 + b2 + c2 = 6
Find a4 + b4 +c4
Asked by poonambarnwal2018
| 23rd Apr, 2020,
02:49: PM
Expert Answer:
Given: a+b+c=0 ... (i) and a2+b2+c2=6 ... (ii)
From (i)
(a+b+c)2=0
a2+b2+c2+2(ab+bc+ac)=0
6+2(ab+bc+ac)=0 ... Using (ii)
ab+bc+ca=-3
Taking square of the above equation, we have
(ab+bc+ca)2=9
a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=9
a2b2+b2c2+c2a2+2abc(a+b+c)=9
a2b2+b2c2+c2a2+2abc(0)=9 ... Using (i)
a2b2+b2c2+c2a2=9 ... (iii)
From (ii),
a2+b2+c2=6
(a2+b2+c2)2=36
a4+b4+c4+2(a2b2+b2c2+c2a2)=36
a4+b4+c4+2(9)=36 ... From (iii)
a4+b4+c4+18=36
a4+b4+c4=18
a2b2+b2c2+c2a2+2abc(a+b+c)=9
a2b2+b2c2+c2a2+2abc(0)=9 ... Using (i)a4+b4+c4+2(9)=36 ... From (iii)
Answered by Renu Varma
| 24th Apr, 2020,
11:25: AM
Kindly Sign up for a personalised experience
- Ask Study Doubts
- Sample Papers
- Past Year Papers
- Textbook Solutions
Sign Up
Verify mobile number
Enter the OTP sent to your number
Change