An object is at a distance of a) 2x b) 3/2x , from a concave lens having a focal length of magnitude x. draw ray diagrams showing formation of the image in both the cases ?

Asked by  | 10th Feb, 2012, 07:31: PM

Expert Answer:

The object is located at 2F

When the object is located at the 2F point, the image will also be located at the 2F point on the other side of the lens. In this case, the image will be inverted (i.e., a right side up object results in an upside-down image). The image dimensions are equal to the object dimensions. A six-foot tall person would have an image that is six feet tall; the absolute value of the magnification is exactly 1. Finally, the image is a real image. Light rays actually converge at the image location. As such, the image of the object could be projected upon a sheet of paper.

 

The object is located between 2F and F

When the object is located in front of the 2F point, the image will be located beyond the 2F point on the other side of the lens. Regardless of exactly where the object is located between 2F and F, the image will be located in the specified region. In this case, the image will be inverted (i.e., a right side up object results in an upside-down image). The image dimensions are larger than the object dimensions. A six-foot tall person would have an image that is larger than six feet tall. The absolute value of the magnification is greater than 1. Finally, the image is a real image. Light rays actually converge at the image location. As such, the image of the object could be projected upon a sheet of paper.

Answered by  | 12th Feb, 2012, 07:24: AM

Queries asked on Sunday & after 7pm from Monday to Saturday will be answered after 12pm the next working day.