A certain charge Q is divided into two parts q and Q − q, which are then
separated by a certain distance. What must q be in terms of Q to maximize the
electrostatic repulsion between the two charges?

Asked by rushabhjain.avv | 5th May, 2020, 09:44: PM

Expert Answer:

B y space C o u l o m b apostrophe s space l a w comma space
F space equals space fraction numerator k q left parenthesis Q minus q right parenthesis over denominator r squared end fraction space
k space equals fraction numerator 1 over denominator 4 πε subscript 0 end fraction space
F o r space F o r c e space F comma space t o space b e space m a x i m u m space
fraction numerator d F over denominator d q end fraction space equals space 0
F space equals space fraction numerator k q Q over denominator r squared end fraction minus fraction numerator k q squared over denominator r squared end fraction
fraction numerator d F over denominator d q end fraction space equals space fraction numerator k Q over denominator r squared end fraction minus fraction numerator 2 k q over denominator r squared end fraction equals space 0
rightwards double arrow fraction numerator k Q over denominator r squared end fraction equals space fraction numerator 2 k q over denominator r squared end fraction
q equals Q over 2 space   
 to maximize the electrostatic repulsion between the two charges, q = Q/2 

Answered by Shiwani Sawant | 5th May, 2020, 11:56: PM