Question
Sat April 14, 2012 By:

# use euclid's division lemma to show that the cube of any positive integer is either of the form 9m,9m+1,9m+8 for some integer m.

Tue May 08, 2012

Let x be any positive integer. Then, it is of the form 3q or, 3q + 1 or, 3q + 2.

So, we have the following cases :

Case I : When x = 3q.

then, x3 = (3q)3 = 27q3 = 9 (3q3) = 9m, where m = 3q3.

Case II : When x = 3q + 1

then, x3 = (3q + 1)3

= 27q3 + 27q2 + 9q + 1

= 9 q (3q2 + 3q + 1) + 1

= 9m + 1, where m = q (3q2 + 3q + 1)

Case III. When x = 3q + 2

then, x3 = (3q + 2)3

= 27 q3 + 54q2 + 36q + 8

= 9q (3q2 + 6q + 4) + 8

= 9 m + 8, where m = q (3q2 + 6q + 4)

Hence, x3 is either of the form 9 m or 9 m + 1 or, 9 m + 8.

Related Questions
Sun April 23, 2017

# Q1 - A positive integer is of the form 3q+1 , q being a natural number . Can you write its square in any form other than 3m+1 , 3m or 3m +2 for some integer m ? Justify your answer.      Q2 - The solution of RdSharma book - level 2 is not provided . Plz provide the answers .

Sat April 22, 2017